Publications by authors named "Pyshar Yi"

Leidenfrost droplets can be considered as soft engines capable of directly transforming heat into mechanical energy. Despite remarkable advancements in understanding the propulsion of Leidenfrost droplets on asymmetric structures, the complex dynamics of droplets in enclosed structures is not fully understood. To address this fundamental gap, we investigated the dynamics of Leidenfrost droplets restricted by metal disks.

View Article and Find Full Text PDF

Recently, the bubble-based systems have offered a new paradigm in microfluidics. Gas bubbles are highly flexible, controllable and barely mix with liquids, and thus can be used for the creation of reconfigurable microfluidic systems. In this work, a hydrodynamically actuated bubble-based microfluidic system is introduced.

View Article and Find Full Text PDF

Budding yeast cells are quick and easy to grow and represent a versatile model of eukaryotic cells for a variety of cellular studies, largely because their genome has been widely studied and links can be drawn with higher eukaryotes. Therefore, the efficient separation, immobilization, and conversion of budding yeasts into spheroplast or protoplast can provide valuable insight for many fundamentals investigations in cell biology at a single cell level. Dielectrophoresis, the induced motion of particles in non-uniform electric fields, possesses a great versatility for manipulation of cells in microfluidic platforms.

View Article and Find Full Text PDF

Increasing the thermal conductivity of PDMS (polydimethylsiloxane) based microfluidics is an important issue for the thermal management of hot spots produced by embedding electronic circuits in such systems. This paper presents a solution for enhancing the thermal conductivity of such PDMS based microfluidics by introducing thermally conductive alumina (Al2O3) nanoparticles, forming PDMS/Al2O3 nanocomposites. The materials are fully characterized for different concentrations of Al2O3 in PDMS for experiments which are conducted at different flow rates.

View Article and Find Full Text PDF

Assembled nanofin heat sinks, nanostructures which are formed via external forces in a cooling microfluidic to remove heat from hot spots, are a new concept that has recently been introduced. In this work, we investigate nanofin structures formed by CrO2 and Fe2O3 magnetic nanoparticles and compare their performance. Thermal imaging is used for comparison of three cases including: (i) DI water as the coolant liquid, (ii) suspension of magnetic particles in DI water, and (iii) suspension of magnetic particles in DI water in the presence of a magnetic field.

View Article and Find Full Text PDF

Dielectrophoresis is a versatile tool for the sorting, immobilization, and characterization of cells in microfluidic systems. The performance of dielectrophoretic systems strongly relies on the configuration of microelectrodes, which produce a nonuniform electric field. However, once fabricated, the microelectrodes cannot be reconfigured to change the characteristics of the system.

View Article and Find Full Text PDF

We present the thermal analysis of liquid containing Al(2)O(3) nanoparticles in a microfluidic platform using an infrared camera. The small dimensions of the microchannel along with the low flow rates (less than 120 μl min(-1)) provide very low Reynolds numbers of less than 17.5, reflecting practical parameters for a microfluidic cooling platform.

View Article and Find Full Text PDF