Most organisms have circadian clocks to ensure the metabolic cycle to resonate with the rhythmic environmental changes without "damping," or losing robustness. Cyanobacteria is the oldest and simplest form of life that is known to harbor this biological intricacy. Its KaiABC-based central oscillator proteins can be reconstituted inside a test tube, and the post-translational modification cycle occurs with 24 h periodicity.
View Article and Find Full Text PDFOscillatory phosphorylation/dephosphorylation can be commonly found in a biological system as a means of signal transduction though its pivotal presence in the workings of circadian clocks has drawn significant interest: for example in a significant portion of the physiology of PCC 7942. The biological oscillatory reaction in the cyanobacterial circadian clock can be visualized through its reconstitution in a test tube by mixing three proteins-KaiA, KaiB and KaiC-with adenosine triphosphate and magnesium ions. Surprisingly, the oscillatory phosphorylation/dephosphorylation of the hexameric KaiC takes place spontaneously and almost indefinitely in a test tube as long as ATP is present.
View Article and Find Full Text PDFCyanobacteria are photosynthetic organisms that are known to be responsible for oxygenating Earth's early atmosphere. Having evolved to ensure optimal survival in the periodic light/dark cycle on this planet, their genetic codes are packed with various tools, including a sophisticated biological timekeeping system. Among the cyanobacteria is PCC 7942, the simplest clock-harboring organism with a powerful genetic tool that enabled the identification of its intricate timekeeping mechanism.
View Article and Find Full Text PDFThe circadian clock is a timekeeping system in most organisms that keeps track of the time of day. The rhythm generated by the circadian oscillator must be constantly synchronized with the environmental day/night cycle to make the timekeeping system truly advantageous. In the cyanobacterial circadian clock, quinone is a biological signaling molecule used for entraining and fine-tuning the oscillator, a process in which the external signals are transduced into biological metabolites that adjust the phase of the circadian oscillation.
View Article and Find Full Text PDFThe circadian clock controls 24-h biological rhythms in our body, influencing many time-related activities such as sleep and wake. The simplest circadian clock is found in cyanobacteria, with the proteins KaiA, KaiB, and KaiC generating a self-sustained circadian oscillation of KaiC phosphorylation and dephosphorylation. KaiA activates KaiC phosphorylation by binding the A-loop of KaiC, while KaiB attenuates the phosphorylation by sequestering KaiA from the A-loop.
View Article and Find Full Text PDFCyanobacteria contain a circadian oscillator that can be reconstituted in vitro. In the reconstituted circadian oscillator, the phosphorylation state of KaiC oscillates with a circadian period, spending about 12 h in the phosphorylation phase and another 12 h in the dephosphorylation phase. Although some entrainment studies have been performed using the reconstituted oscillator, they were insufficient to fully explain entrainment mechanisms of the cyanobacterial circadian clock due to the lack of input pathway components in the in vitro oscillator reaction mixture.
View Article and Find Full Text PDF