The current study explores the synergistic application of biophysical chemistry and nanotechnology in therapeutic treatments, focusing specifically on the development of advanced biomaterials to repurpose FDA-approved Alzheimer's disease (AD) drugs as potent antioxidants. By integration of AD drugs into graphene oxide (GO) nanocomposites, an attempt to enhance the acetylcholinesterase (AChE) inhibition and increase radical scavenging activity is proposed. This bionano synergy is designed to leverage the unique properties of both the nanomaterial surface and the bioactive compounds, improving treatment effectiveness.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2024
Derivatives of thiazole-pyrazole fused benzo-coumarin compounds were successfully synthesized and characterized, followed by a comprehensive spectroscopic investigation on various photophysical properties in different media. The multipronged approach using steady state and time resolved fluorescence spectroscopy pointed out the impact of substitution in the estimated spectroscopic and other physicochemical properties of the systems. Further, the evaluation of anti-acetylcholinesterase (anti-AChE) activity yielded significant insight into the therapeutic potential of the synthesized coumarinyl compounds for the treatment of Alzheimer's disease (AD).
View Article and Find Full Text PDFRepurposing of existing drugs toward new therapeutic use(s) has become an emergent area of research in current times. In this context, the antioxidant behavior of eight cholinergic drugs used in the treatment of Alzheimer's disease (AD) was investigated theoretically. The low bond dissociation enthalpy values in all of the compounds advocated for the hydrogen atom transfer mechanism toward the observed antioxidant behavior.
View Article and Find Full Text PDFExcited state deactivation properties and the effects of solvent hydrogen bonding (HB) on the photophysical behavior of 2,2'-dypyridylamine (DPyA) were investigated by steady state and time-resolved fluorescence experiments, molecular docking, and density functional theory (DFT) calculations. In addition to the polarity effect, the contributions of solvent HB donation (HBD) acidity and HB acceptance (HBA) basicity to modulate the solvatochromic spectral properties were estimated from multiparametric linear regression analysis using Kamlet-Taft (KT) and Catalán formalisms. The importance of C-N bond torsion, leading to the → conversion, was manifested by substantial increase in DPyA fluorescence yield in the presence of cyclodextrin (CD) and glycerol.
View Article and Find Full Text PDF