A new strategy integrating the straight synthesis of carbon dots (CDs) and their direct use for the determination of heavy metals by means of fluorescence quenching is presented. The proposal consists of a modular analyzer, which includes a low temperature co-fired ceramics (LTCC) microreactor for the synthesis of CDs and a cyclic olefin copolymer (COC) microfluidic platform, which automatically performs a reverse flow injection analysis (rFIA) protocol for the determination of heavy metal ions in water by CD fluorescence quenching. As a proof of concept, nitrogen-doped CDs were synthesized from acrylic acid and ethylenediamine (ED) with quantum yields (QYs) of up to 44%, which are selective to cobalt.
View Article and Find Full Text PDFBackground: Febrile urinary tract infections (fUTI) in men are frequently complicated with subclinical prostatic involvement, measured by a transient increase in serum prostate-specific-antigen (sPSA). The aim of this study was to evaluate recurrence rates in a 6-month follow-up period of 2-week versus 4-week antibiotic treatment in men with fUTI, based on prostatic involvement. Clinical and microbiological cure rates at the end-of-therapy (EoT) were also assessed.
View Article and Find Full Text PDFSome inborn errors of metabolism and other diseases can result in increasing blood ammonium (hyperammonemia episodes), which can cause serious neurological complications in patients or even death. Early diagnosis, follow up and treatment are essential to minimize irreversible damages in brain. Currently, adequate analytical instrumentation for the necessary ammonium bedside determination is not available in all health centers but only in clinical laboratories of reference hospitals.
View Article and Find Full Text PDFInnovation in products and processes, traceability, food security and quality control are inherent challenges in agri-food sector. Trends in wine production are focused on obtaining natural wines with less chemical intervention. Following this goal, a low cost miniaturized, easy-to-use and highly automated microanalyzer to monitor total potassium in winemaking processes is presented.
View Article and Find Full Text PDFCancer is a major public health problem and the second leading cause of death worldwide. The burden of cancer continues to grow and is projected to double by 2040. This situation calls for coordinated action and emphasizes the need to join efforts on worldwide initiatives, including World Cancer Research Day (WCRD), which aims to create and consolidate a yearly momentum to raise awareness and commitment for research on cancer.
View Article and Find Full Text PDFThe analysis of soluble reactive phosphate (SRP) in water is key to control water quality. In order to continuous monitor orthophosphate content in water during treatment processes and in the effluents of wastewater treatment plants, conventional procedures, usually performed in a laboratory, must be adapted. This means pursuing efforts on miniaturizing systems to operate in situ and automating analytical methods to work on-line.
View Article and Find Full Text PDFThe construction and evaluation of a Cyclic Olefin Copolymer (COC)-based continuous flow potentiometric microanalyzer to simultaneously monitor potassium, chloride and nitrate ions in samples from an on-board water recycling process expected to be installed in future manned space missions is presented. The main goals accomplished in this work address the specific required characteristics for a miniaturized on-line monitoring system to control water quality in such missions. To begin with, the integration of three ion-selective electrodes (ISEs) and a reference electrode in a compact microfluidic platform that incorporates a simple automatic autocalibration process allows obtaining information about the concentration of the three ions with optimal analytical response characteristics, but moreover with low reagents consumption and therefore with few waste generation, which is critical for this specific application.
View Article and Find Full Text PDFAssisted reproductive technology (ART) can benefit from the features of microfluidic technologies, such as the automation of time-consuming labor-intensive procedures, the possibility to mimic in vivo environments, and the miniaturization of the required equipment. To date, most of the proposed approaches are based on polydimethylsiloxane (PDMS) as platform substrate material due to its widespread use in academia, despite certain disadvantages, such as the elevated cost of mass production. Herein, we present a rapid fabrication process for a cyclic olefin copolymer (COC) monolithic microfluidic device combining hot embossing-using a low-temperature cofired ceramic (LTCC) master-and micromilling.
View Article and Find Full Text PDFAssisted reproductive technology (ART) can benefit from the features of microfluidic technologies, such as the automation of time-consuming labor-intensive procedures, the possibility to mimic in vivo environments, and the miniaturization of the required equipment. To date, most of the proposed approaches are based on polydimethylsiloxane (PDMS) as platform substrate material due to its widespread use in academia, despite certain disadvantages, such as the elevated cost of mass production. Herein, we present a rapid fabrication process for a cyclic olefin copolymer (COC) monolithic microfluidic device combining hot embossing-using a low-temperature cofired ceramic (LTCC) master-and micromilling.
View Article and Find Full Text PDFPhotonic nanofences consisting of high aspect ratio polymeric optical subwavelength waveguides have been developed for their application into photonic sensing devices. They are up to millimeter long arrays of 250 nm wide and 6 μm high ridges produced by an advanced lithography process on a silicon substrate enabling their straightforward integration into complex photonic circuits. Both simulations and experimental results show that the overlap of the evanescent fields propagating from each photonic nanofence allows for the formation of an effective waveguide that confines the overall evanescent field within its limits.
View Article and Find Full Text PDFThe design, construction and evaluation of a versatile cyclic olefin copolymer (COC)-based continuous flow potentiometric microanalyzer to monitor the presence of ammonium ion in recycling water processes for future manned space missions is presented. The microsystem integrates microfluidics, a gas-diffusion module and a detection system in a single substrate. The gas-diffusion module was integrated by a hydrophobic polyvinylidene fluoride (PVDF) membrane.
View Article and Find Full Text PDFWhile magnetic bead (MB)-based bioassays have been implemented in integrated devices, their handling on-chip is normally either not optimal--i.e. only trapping is achieved, with aggregation of the beads--or requires complex actuator systems.
View Article and Find Full Text PDFThe present paper describes the use of a microfluidic system to synthesize carbon dots (Cdots) and their use as optical pH sensors. The synthesis is based on the thermal decomposition of ascorbic acid in dimethyl sulfoxide. The proposed microsystem is composed of a fluidic and a thermal platform, which enable proper control of synthesis variables.
View Article and Find Full Text PDFA centrifugal microfluidic platform prototype with an integrated membrane for gas diffusion is presented for the first time. The centrifugal platform allows multiple and parallel analysis on a single disk and integrates at least ten independent microfluidic subunits, which allow both calibration and sample determination. It is constructed with a polymeric substrate material and it is designed to perform colorimetric determinations by the use of a simple miniaturized optical detection system.
View Article and Find Full Text PDFThe construction and evaluation of a Low Temperature Co-fired Ceramics (LTCC)-based continuous flow potentiometric microanalyzer prototype to simultaneously monitor the presence of two ions (potassium and nitrate) in samples from the water recycling process for future manned space missions is presented. The microsystem integrates microfluidics and the detection system in a single substrate and it is smaller than a credit card. The detection system is based on two ion-selective electrodes (ISEs), which are built using all-solid state nitrate and potassium polymeric membranes, and a screen-printed Ag/AgCl reference electrode.
View Article and Find Full Text PDFTwo new complexes [Cu(Cand)(H2O)4] [1] and [Cu2(TCand)4(H2O)2]·4H2O [2] (Cand = candesartan; TCand = trityl candesartan) have been synthesized and thoroughly characterized. The FTIR, Raman, EPR and diffuse reflectance spectra of the solid compounds show a dimeric complex for [2] with carboxylate bridging of the type found in copper(II) acetate. Both elemental analysis and thermal measurements allow the determination of the total stoichiometries of both complexes.
View Article and Find Full Text PDFThe recent needs in the nanosciences field have promoted the interest towards the development of miniaturized and highly integrated devices able to improve and automate the current processes associated with efficient nanomaterials production. Herein, a green tape based microfluidic system to perform high temperature controlled synthetic reactions of nanocrystals is presented. The device, which integrates both the microfluidics and a thermally controlled platform, was applied to the automated and continuous synthesis of CdSe quantum dots.
View Article and Find Full Text PDFIn this paper, a computer controlled microreactor to synthesize water soluble CdS and CdS/ZnS nanocrystals with in situ monitoring of the reaction progress is developed. It is based on ceramic tapes and the Low-Temperature Co-fired Ceramics technology (LTCC). As well the microsystem set-up, the microreactor fluidic design has also been thoroughly optimized.
View Article and Find Full Text PDFMonitoring organic environmental contaminants is of crucial importance to ensure public health. This requires simple, portable and robust devices to carry out on-site analysis. For this purpose, a low-temperature co-fired ceramics (LTCC) microfluidic potentiometric device (LTCC/μPOT) was developed for the first time for an organic compound: sulfamethoxazole (SMX).
View Article and Find Full Text PDFNanotechnology
October 2010
A microfluidic system based on the low-temperature co-fired ceramics technology (LTCC) is proposed to reproducibly carry out a simple one-phase synthesis and functionalization of monodispersed gold nanoparticles. It takes advantage of the LTCC technology, offering a fast prototyping without the need to use sophisticated facilities, reducing significantly the cost and production time of microfluidic systems. Some other interesting advantages of the ceramic materials compared to glass, silicon or polymers are their versatility and chemical resistivity.
View Article and Find Full Text PDFA multicommutation-based flow system with photometric detection was developed, employing an analytical microsystem constructed with low temperature co-fired ceramics (LTCC) technology, a solid-phase reactor containing particles of Canavalia ensiformis DC (urease source) immobilized with glutaraldehyde, and a mini-photometer coupled directly to the microsystem which monolithically integrates a continuous flow cell. The determination of urea in milk was based on the hydrolysis of urea in the solid-phase reactor and the ammonium ions produced were monitored using the Berthelot reaction. The analytical curve was linear in the urea concentration range from 1.
View Article and Find Full Text PDFWe have unveiled a synthetic lethal interaction between K-Ras oncogenes and Cdk4 in a mouse tumor model that closely recapitulates human non-small cell lung carcinoma (NSCLC). Ablation of Cdk4, but not Cdk2 or Cdk6, induces an immediate senescence response only in lung cells that express an endogenous K-Ras oncogene. No such response occurs in lungs expressing a single Cdk4 allele or in other K-Ras-expressing tissues.
View Article and Find Full Text PDFArch Esp Urol
December 2009
Stress urinary incontinence (SUI) is a symptom appearing in both males and females. Pharmacological treatment has demonstrated to be effective for female SUI, but its role for treatment in males is controversial. This review evaluates the various types of drugs, their effects, and levels of efficacy in the studies.
View Article and Find Full Text PDFThe integration of optical detection methods in continuous flow microsystems can highly extend their range of application, as long as some negative effects derived from their scaling down can be minimized. Downsizing affects to a greater extent the sensitivity of systems based on absorbance measurements than the sensitivity of those based on emission ones. However, a careful design of the instrumental setup is needed to maintain the analytical features in both cases.
View Article and Find Full Text PDFNew far-visible absorbing anilino-cyanine dyes have been synthesised for future application as chromoionophores in integrated waveguide absorbance optodes based on bulk optodes. The effect of the heterocycle, of the substitution of the heterocyclic nitrogen and of the type of heptamethine central ring on the pKa values (4.3-8.
View Article and Find Full Text PDF