Stem Cell Reports
January 2024
The spatial localization of RNA within cells is closely related to its function and also involved in cell fate determination. However, the atlas of RNA distribution within cells and dynamic changes during the developmental process are largely unknown. In this study, five subcellular components, including cytoplasmic extract, membrane extract, soluble nuclear extract, chromatin-bound nuclear extract, and cytoskeletal extract, were isolated and the rules of subcellular RNA distribution in human embryonic stem cells (hESCs) and its change during hESC differentiation are summarized for the first time.
View Article and Find Full Text PDFLong noncoding ribonucleic acids (RNAs; LncRNAs) endowed with both protein-coding and noncoding functions are referred to as 'dual functional lncRNAs'. Recently, dual functional lncRNAs have been intensively studied and identified as involved in various fundamental cellular processes. However, apart from time-consuming and cell-type-specific experiments, there is virtually no in silico method for predicting the identity of dual functional lncRNAs.
View Article and Find Full Text PDFSingle-cell transcriptional profiling has rapidly advanced our understanding of the embryonic hematopoiesis; however, whether and what role RNA alternative splicing (AS) plays remains an enigma. This is important for understanding the mechanisms underlying splicing-associated hematopoietic diseases and for the derivation of therapeutic stem cells. Here, we used single-cell full-length transcriptome data to construct an isoform-based transcriptional atlas of the murine endothelial-to-hematopoietic stem cell (HSC) transition, which enables the identification of hemogenic signature isoforms and stage-specific AS events.
View Article and Find Full Text PDFEstablishing an RNA-associated interaction repository facilitates the system-level understanding of RNA functions. However, as these interactions are distributed throughout various resources, an essential prerequisite for effectively applying these data requires that they are deposited together and annotated with confidence scores. Hence, we have updated the RNA-associated interaction database RNAInter (RNA Interactome Database) to version 4.
View Article and Find Full Text PDFResolving the spatial distribution of the transcriptome at a subcellular level can increase our understanding of biology and diseases. To facilitate studies of biological functions and molecular mechanisms in the transcriptome, we updated RNALocate, a resource for RNA subcellular localization analysis that is freely accessible at http://www.rnalocate.
View Article and Find Full Text PDFWith the dramatic development of single-cell RNA sequencing (scRNA-seq) technologies, the systematic decoding of cell-cell communication has received great research interest. To date, several in-silico methods have been developed, but most of them lack the ability to predict the communication pathways connecting the insides and outsides of cells. Here, we developed CellCall, a toolkit to infer inter- and intracellular communication pathways by integrating paired ligand-receptor and transcription factor (TF) activity.
View Article and Find Full Text PDFThe implications of stem cell heterogeneity for disease pathogenesis and therapy are poorly defined. myeloproliferative neoplasms (MPNs), harboring the same mutation in hematopoietic stem cells (HSCs), display diverse phenotypes, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). These chronic malignant disorders are ideal models to analyze the pathological consequences of stem cell heterogeneity.
View Article and Find Full Text PDFThe implications of stem cell heterogeneity for disease pathogenesis and therapy are poorly defined. JAK2V617F myeloproliferative neoplasms (MPNs), harboring the same mutation in hematopoietic stem cells (HSCs), display diverse phenotypes, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). These chronic malignant disorders are ideal models to analyze the pathological consequences of stem cell heterogeneity.
View Article and Find Full Text PDFThe regulatory circuitry underlying embryonic stem (ES) cell self-renewal is well defined, but how this circuitry is disintegrated to enable lineage specification is unclear. RNA-binding proteins (RBPs) have essential roles in RNA-mediated gene regulation, and preliminary data suggest that they might regulate ES cell fate. By combining bioinformatic analyses with functional screening, we identified seven RBPs played important roles for the exit from pluripotency of ES cells.
View Article and Find Full Text PDFResearch on RNA-associated interactions has exploded in recent years, and increasing numbers of studies are not limited to RNA-RNA and RNA-protein interactions but also include RNA-DNA/compound interactions. To facilitate the development of the interactome and promote understanding of the biological functions and molecular mechanisms of RNA, we updated RAID v2.0 to RNAInter (RNA Interactome Database), a repository for RNA-associated interactions that is freely accessible at http://www.
View Article and Find Full Text PDFMacroautophagy/autophagy has been demonstrated to play an essential role in embryonic development. However, the role of autophagy during human fetal digestive tract development has not been investigated. Here, by using over 5,000 human embryonic digestive tract cells ranging from 6 weeks to 25 weeks, we explored the dynamic expression of autophagy-related genes at single-cell resolution, and found that the transcriptional activity of autophagy-related genes boosted remarkably and specifically in the early (between 6 and 9 weeks) stages.
View Article and Find Full Text PDFMacroautophagy/autophagy plays an essential role in hematopoietic stem cell (HSC) differentiation. However, the role of autophagy during monocytic and granulocytic differentiation remains poorly understood. Hence, we first represented global transcriptomic analysis for temporal expression of autophagy genes during monocytic and granulocytic differentiation by combining RNA-Seq data with monocytic and granulocytic induction in CD34 hematopoietic stem and progenitor cells.
View Article and Find Full Text PDFRNA-binding proteins (RBPs) integrate the processing of RNAs into post-transcriptional gene regulation, but the direct contribution of them to myeloid cell specification is poorly understood. Here, we report the first global RBP transcriptomic analysis of myeloid differentiation by combining RNA-seq analysis with myeloid induction in CD34 hematopoietic progenitor cells. The downregulated expression of the KH-Type Splicing Regulatory Protein (KSRP) during monocytopoiesis and up-regulated expression during granulopoiesis suggests that KSRP has divergent roles during monocytic and granulocytic differentiation.
View Article and Find Full Text PDFNucleic Acids Res
January 2018
Accumulating evidence suggests that diverse non-coding RNAs (ncRNAs) are involved in the progression of a wide variety of diseases. In recent years, abundant ncRNA-disease associations have been found and predicted according to experiments and prediction algorithms. Diverse ncRNA-disease associations are scattered over many resources and mammals, whereas a global view of diverse ncRNA-disease associations is not available for any mammals.
View Article and Find Full Text PDFNucleic Acids Res
January 2017
With the development of biotechnologies and computational prediction algorithms, the number of experimental and computational prediction RNA-associated interactions has grown rapidly in recent years. However, diverse RNA-associated interactions are scattered over a wide variety of resources and organisms, whereas a fully comprehensive view of diverse RNA-associated interactions is still not available for any species. Hence, we have updated the RAID database to version 2.
View Article and Find Full Text PDFIncreasing evidence has revealed that RNA subcellular localization is a very important feature for deeply understanding RNA's biological functions after being transported into intra- or extra-cellular regions. RNALocate is a web-accessible database that aims to provide a high-quality RNA subcellular localization resource and facilitate future researches on RNA function or structure. The current version of RNALocate documents more than 37 700 manually curated RNA subcellular localization entries with experimental evidence, involving more than 21 800 RNAs with 42 subcellular localizations in 65 species, mainly including Homo sapiens, Mus musculus and Saccharomyces cerevisiae etc.
View Article and Find Full Text PDFProgrammed cell death (PCD) is a critical biological process involved in many important processes, and defects in PCD have been linked with numerous human diseases. In recent years, the protein architecture in different PCD subroutines has been explored, but our understanding of the global network organization of the noncoding RNA (ncRNA)-mediated cell death system is limited and ambiguous. Hence, we developed the comprehensive bioinformatics resource (ncRDeathDB, www.
View Article and Find Full Text PDFSynthetic biologists have developed DNA/molecular modules that perform genetic logic operations in living cells to track key moments in a cell's life or change the fate of a cell. Increasing evidence has also revealed that diverse genetic logic gates capable of generating a Boolean function play critically important roles in synthetic biology. Basic genetic logic gates have been designed to combine biological science with digital logic.
View Article and Find Full Text PDFTranscriptomic analyses have revealed an unexpected complexity in the eukaryote transcriptome, which includes not only protein-coding transcripts but also an expanding catalog of noncoding RNAs (ncRNAs). Diverse coding and noncoding RNAs (ncRNAs) perform functions through interaction with each other in various cellular processes. In this project, we have developed RAID (http://www.
View Article and Find Full Text PDF