Publications by authors named "Putzer H"

RNase Y is a key endoribonuclease that regulates global mRNA turnover and processing in and likely many other bacteria. This enzyme is anchored to the cell membrane, creating a pseudo-compartmentalization that aligns with its role in initiating the decay of mRNAs primarily translated at the cell periphery. However, the reasons behind and the consequences of RNase Y's membrane attachment remain largely unknown.

View Article and Find Full Text PDF

The instability of messenger RNA is crucial to the control of gene expression. In , RNase Y is the major decay-initiating endoribonuclease. Here, we show how this key enzyme regulates its own synthesis by modulating the longevity of its mRNA.

View Article and Find Full Text PDF

Noncoding 6S RNAs regulate transcription by binding to the active site of bacterial RNA polymerase holoenzymes. Processing and decay of 6S-1 and 6S-2 RNA were investigated in by northern blot and RNA-seq analyses using different RNase knockout strains, as well as by in vitro processing assays. For both 6S RNA paralogs, we identified a key-but mechanistically different-role of RNase J1.

View Article and Find Full Text PDF

One presenilin gene (PSEN) is expressed in the sea urchin embryo, in the vegetal pole of the gastrula and then mainly in cilia cells located around the digestive system of the pluteus, as we recently have reported. PSEN expression must be accurately regulated for correct execution of these two steps of development. While investigating PSEN expression changes in embryos after expansion of endoderm with LiCl or of ectoderm with Zn2+ by whole-mount in situ hybridization (WISH) and quantitative PCR (qPCR), we detected natural antisense transcription of PSEN.

View Article and Find Full Text PDF

RNase Y and RNase E are disparate endoribonucleases that govern global mRNA turnover/processing in the two evolutionary distant bacteria Bacillus subtilis and Escherichia coli, respectively. The two enzymes share a similar in vitro cleavage specificity and subcellular localization. To evaluate the potential equivalence in biological function between the two enzymes in vivo we analyzed whether and to what extent RNase E is able to replace RNase Y in B.

View Article and Find Full Text PDF

mRNA levels result from an equilibrium between transcription and degradation. Ribonucleases (RNases) facilitate the turnover of mRNA, which is an important way of controlling gene expression, allowing the cells to adjust transcript levels to a changing environment. In contrast to the heterotrophic model bacteria and , RNA decay has not been studied in detail in cyanobacteria.

View Article and Find Full Text PDF

Metabolic turnover of mRNA is fundamental to the control of gene expression in all organisms, notably in fast-adapting prokaryotes. In many bacteria, RNase Y initiates global mRNA decay via an endonucleolytic cleavage, as shown in the Gram-positive model organism This enzyme is tethered to the inner cell membrane, a pseudocompartmentalization coherent with its task of initiating mRNA cleavage/maturation of mRNAs that are translated at the cell periphery. Here, we used total internal reflection fluorescence microscopy (TIRFm) and single-particle tracking (SPT) to visualize RNase Y and analyze its distribution and dynamics in living cells.

View Article and Find Full Text PDF

The metabolic instability of mRNA is fundamental to the adaptation of gene expression. In bacteria, mRNA decay follows first-order kinetics and is primarily controlled at the steps initiating degradation. In the model Gram-positive organism Bacillus subtilis, the major mRNA decay pathway initiates with an endonucleolytic cleavage by the membrane-associated RNase Y.

View Article and Find Full Text PDF

Although RNase Y acts as the key enzyme initiating messenger RNA decay in Bacillus subtilis and likely in many other Gram-positive bacteria, its three-dimensional structure remains unknown. An antibody belonging to the rare immunoglobulin G (IgG) 2b λx isotype was raised against a 12-residue conserved peptide from the N-terminal noncatalytic domain of B. subtilis RNase Y (BsRNaseY) that is predicted to be intrinsically disordered.

View Article and Find Full Text PDF

Chlamydomonas RNase J is the first member of this enzyme family that has endo- but no intrinsic 5' exoribonucleolytic activity. This questions its proposed role in chloroplast mRNA maturation. RNA maturation and stability in the chloroplast are controlled by nuclear-encoded ribonucleases and RNA binding proteins.

View Article and Find Full Text PDF

Unlabelled: Bacteria adopt social behavior to expand into new territory, led by specialized swarmers, before forming a biofilm. Such mass migration of Bacillus subtilis on a synthetic medium produces hyperbranching dendrites that transiently (equivalent to 4 to 5 generations of growth) maintain a cellular monolayer over long distances, greatly facilitating single-cell gene expression analysis. Paradoxically, while cells in the dendrites (nonswarmers) might be expected to grow exponentially, the rate of swarm expansion is constant, suggesting that some cells are not multiplying.

View Article and Find Full Text PDF

The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes.

View Article and Find Full Text PDF

In Bacillus subtilis, the dual activity 5' exo- and endoribonucleases J1 and J2 are important players in mRNA and stable RNA maturation and degradation. Recent work has improved our understanding of their structure and mechanism of action and identified numerous RNA substrates. However, almost nothing is known about the expression of these enzymes.

View Article and Find Full Text PDF

The instability of messenger RNA is fundamental to the control of gene expression. In bacteria, mRNA degradation generally follows an "all-or-none" pattern. This implies that if control is to be efficient, it must occur at the initiating (and presumably rate-limiting) step of the degradation process.

View Article and Find Full Text PDF
Article Synopsis
  • B. subtilis grows faster using glucosamine compared to N-acetylglucosamine, indicating that it has adapted to utilize glucosamine more efficiently due to the presence of the gamAP operon, which is specifically induced by glucosamine.
  • The research involved creating multiple deletion mutations in B. subtilis to study the roles of nag and gam operons in metabolizing these sugars, revealing that gamA is the primary gene responsible for N-acetylglucosamine catabolism.
  • The repression of the nagAB genes by a regulator called YvoA and the unique presence of the ybgA-gamAP operon in B. subtilis, which likely originated from lateral gene transfer, together support
View Article and Find Full Text PDF

RNase Y is a key endoribonuclease affecting global mRNA stability in Bacillus subtilis. Its characterization provided the first evidence that endonucleolytic cleavage plays a major role in the mRNA metabolism of this organism. RNase Y shares important functional features with the RNA decay initiating RNase E from Escherichia coli, notably a similar cleavage specificity and a preference for 5' monophosphorylated substrates.

View Article and Find Full Text PDF

The degradation of messenger RNA is of universal importance for controlling gene expression. It directly affects protein synthesis by modulating the amount of mRNA available for translation. Regulation of mRNA decay provides an efficient means to produce just the proteins needed and to rapidly alter patterns of protein synthesis.

View Article and Find Full Text PDF

The presence of very different sets of enzymes, and in particular the presence of RNase E and RNase J, has been used to explain significant differences in RNA metabolism between the two model organisms Escherichia coli and Bacillus subtilis. However, these studies might have somewhat polarized our view of RNA metabolism. Here, we identified a RNase J in Mycobacterium smegmatis that has both 5'-3' exo- and endonucleolytic activity.

View Article and Find Full Text PDF

RNase J is a key member of the β-CASP family of metallo-β-lactamases involved in the maturation and turnover of RNAs in prokaryotes. The B. subtilis enzyme possesses both 5'-3' exoribonucleolytic and endonucleolytic activity, an unusual property for a ribonuclease.

View Article and Find Full Text PDF

RNase Y is a novel endoribonuclease affecting global mRNA metabolism. We show that this nuclease affects the expression of the Bacillus subtilis infC-rpmI-rplT operon, encoding translation initiation factor IF3 and the ribosomal proteins L35 and L20. This operon is autoregulated by a complex L20-dependent transcription attenuation mechanism.

View Article and Find Full Text PDF

The non-domesticated Bacillus subtilis strain 3610 displays, over a wide range of humidity, hyper-branched, dendritic, swarming-like migration on a minimal agar medium. At high (70 %) humidity, the laboratory strain 168 sfp+ (producing surfactin) behaves very similarly, although this strain carries a frameshift mutation in swrA, which another group has shown under their conditions (which include low humidity) is essential for swarming. We reconcile these different results by demonstrating that, while swrA is essential for dendritic migration at low humidity (30-40 %), it is dispensable at high humidity.

View Article and Find Full Text PDF

Bacillus subtilis possesses interlinked routes for the synthesis of proline. The ProJ-ProA-ProH route is responsible for the production of proline as an osmoprotectant, and the ProB-ProA-ProI route provides proline for protein synthesis. We show here that the transcription of the anabolic proBA and proI genes is controlled in response to proline limitation via a T-box-mediated termination/antitermination regulatory mechanism, a tRNA-responsive riboswitch.

View Article and Find Full Text PDF

Ribonucleases J1 and J2 are recently discovered enzymes with dual 5'-to-3' exoribonucleolytic/endoribonucleolytic activity that plays a key role in the maturation and degradation of Bacillus subtilis RNAs. RNase J1 is essential, while its paralogue RNase J2 is not. Up to now, it had generally been assumed that the two enzymes functioned independently.

View Article and Find Full Text PDF

In contrast to Escherichia coli, initiation of mRNA decay in Gram-positive organisms is poorly understood. We studied the fate of the highly structured RNAs generated by premature transcription termination of S-adenosylmethionine (SAM)-dependent riboswitches in Bacillus subtilis. An essential protein of earlier unknown function, YmdA, was identified as a novel endoribonuclease (now called RNase Y) that was capable of preferential cleaving in vitro of the 5' monophosphorylated yitJ riboswitch upstream of the SAM-binding aptamer domain.

View Article and Find Full Text PDF

The ubiGmccBA operon of Clostridium acetobutylicum is involved in methionine to cysteine conversion. We showed that its expression is controlled by a complex regulatory system combining several RNA-based mechanisms. Two functional convergent promoters associated with transcriptional antitermination systems, a cysteine-specific T-box and an S-box riboswitch, are located upstream of and downstream from the ubiG operon, respectively.

View Article and Find Full Text PDF