Publications by authors named "Putri A Agustian"

Small nucleolar RNAs (snoRNAs) have been used for normalization in glomerular microRNA (miRNA) quantification without confirmation of validity. Our aim was to identify glomerular reference miRNAs in IgA nephropathy. We compared miRNAs in human paraffin-embedded renal biopsies from patients with cellular-crescentic IgA-GN (n = 5; crescentic IgA-GN) and non-crescentic IgA-GN (n = 5; IgA-GN) to mild interstitial nephritis without glomerular abnormalities (controls, n = 5).

View Article and Find Full Text PDF

According to the Banff guidelines for renal transplants, pure endothelialitis without any tubulointerstitial infiltrates (with the Banff components v ≥ 1, i0, t0) has to be called acute cellular rejection (ACR). The pathophysiology of this rare lesion abbreviated as v_only is currently unclear, as well as its clinical, serological, and prognostic implications. Therefore, we conducted this retrospective comparative study.

View Article and Find Full Text PDF

Background: Thrombotic microangiopathy (TMA) in renal transplants (rTx-TMA) is a serious complication and is usually either recurrent TMA (RecTMA) due to humoral rejection (HR-TMA) or due to calcineurin inhibitor toxicity (CNI-TMA). Although the triggers are known, our knowledge about the thrombogenic transcriptome changes in the microvessels is rudimentary.

Methods: We examined the expression of several prothrombotic and antithrombotic genes in 25 biopsies with rTx-TMA (6 RecTMA, 9 HR-TMA, and 10 CNI-TMA) and 8 controls.

View Article and Find Full Text PDF
Article Synopsis
  • Atypical haemolytic-uremic syndrome (aHUS) is a serious condition linked to problems with complement regulation, but the exact connection between complement issues and blood clot formation in aHUS is still unclear.
  • Researchers studied kidney tissues from patients with aHUS and controls, measuring the expression of genes related to blood clot formation and breakdown.
  • Findings showed that aHUS patients had higher levels of PAI-1 (an antifibrinolytic factor) and thrombomodulin, while levels of tPA (a profibrinolytic factor) were lower, suggesting impaired blood clot breakdown may be key to the disease's progression.
View Article and Find Full Text PDF

Background: Benign nephrosclerosis (bN) is the most prevalent form of hypertensive damage in kidney biopsies. It is defined by early hyalinosis and later fibrosis of renal arterioles. Despite its high prevalence, very little is known about the contribution of arteriolar vascular smooth muscle cells (VSMCs) to bN.

View Article and Find Full Text PDF

Transplant glomerulopathy (TxG) can show secondary focal and segmental glomerulosclerosis (FSGS). FSGS in native kidneys is caused by podocytopenia. This study examines podocytopenia and the role of decreased paracrine Met activation on podocytes by decreased glomerular hepatocyte growth factor (HGF) levels in the development of podocytopenia in TxG.

View Article and Find Full Text PDF

A key event in the progression of glomerular disease is podocyte loss that leads to focal and segmental glomerulosclerosis (FSGS). Because adult podocytes are postmitotic cells, podocyte replacement by bone marrow-derived progenitors could prevent podocytopenia and FSGS. This study uses double immunofluorescence for Wilms' tumor-1 and enhanced green fluorescent protein (eGFP) to examine whether an eGFP-positive bone marrow transplant can replace podocytes under normal circumstances and in 3 different rat models of FSGS: puromycin aminoglycoside nephropathy, subtotal nephrectomy, and uninephrectomy.

View Article and Find Full Text PDF

Background: Hypertensive nephrosclerosis alone and in combination with other renal diseases is a leading cause of terminal renal insufficiency. Histologic lesions manifest as benign nephrosclerosis (bN) with arteriolar hyalinosis and later fibrosis. Procoagulant micromilieus have been implicated in fibrosis.

View Article and Find Full Text PDF

The glomerular microenvironment is influenced by circulating growth factors that are filtered from the blood stream and pass the glomerular filtration barrier. In this study, we wanted to explore the role of IGF-binding proteins (IGFBPs) in two diseases that concern podocytes. We analyzed glomerular expression and urinary excretion of IGFBP-1, -2, and -3 in patients with focal segmental glomerulosclerosis (FSGS) or minimal change disease (MCD).

View Article and Find Full Text PDF