The adsorption behaviour of micro-organisms during the initial attachment stage of biofilm formation affects subsequent stages. The available area for attachment and the chemophysical properties of a surface affect microbial attachment performance. This study focused on the initial attachment behaviour of on monazite by measuring the ratio of planktonic against sessile subpopulations (P:S ratio), and the potential role of extracellular DNA (eDNA).
View Article and Find Full Text PDFMicrobial attachment and biofilm formation is a ubiquitous behaviour of microorganisms and is the most crucial prerequisite of contact bioleaching. Monazite and xenotime are two commercially exploitable minerals containing rare earth elements (REEs). Bioleaching using phosphate solubilizing microorganisms is a green biotechnological approach for the extraction of REEs.
View Article and Find Full Text PDFCadmium (Cd) and Arsenate (As) are the main toxic elements in soil environments and are easily taken up by plants. Unraveling the kinetics of the adsorption and subsequent precipitation/immobilization on mineral surfaces is of considerable importance for predicting the fate of these dissolved species in soils. Here we used in situ atomic force microscopy (AFM) to image the dissolution on the (010) face of brushite (dicalcium phosphate dihydrate, CaHPO·2HO) in CdCl- or NaHAsO-bearing solutions over a broad pH and concentration range.
View Article and Find Full Text PDFThe chemical composition of the continental crust cannot be adequately explained by current models for its formation, because it is too rich in Ni and Cr compared to that which can be generated by any of the proposed mechanisms. Estimates of the crust composition are derived from average sediment, while crustal growth is ascribed to amalgamation of differentiated magmatic rocks at continental margins. Here we show that chemical weathering of Ni- and Cr-rich, undifferentiated ultramafic rock equivalent to ~1.
View Article and Find Full Text PDFMineral surfaces play a critical role in the solar nebula as a catalytic surface for chemical reactions and potentially acted as a source of water during Earth's accretion by the adsorption of water molecules to the surface of interplanetary dust particles. However, nothing is known about how mineral surfaces respond to short-lived thermal fluctuations that are below the melting temperature of the mineral. Here we show that mineral surfaces react and rearrange within minutes to changes in their local environment despite being far below their melting temperature.
View Article and Find Full Text PDFIn order to evaluate the organic phosphorus (OP) and pyrophosphate (PyroP) cycle and their fate in the environment, it is critical to understand the effects of mineral interfaces on the reactivity of adsorption and precipitation of OP and PyroP. Here, in situ atomic force microscopy (AFM) is used to directly observe the kinetics of coupled dissolution-precipitation on cleaved (001) surfaces of brucite [Mg(OH)] in the presence of phytate, glucose-6-phosphate (G6P) and pyrophosphate, respectively. AFM results show that the relative order of contribution to mineral surface adsorption and precipitation is phytate > pyrophosphate > G6P under the same solution conditions and can be quantified by the induction time of OP/PyroP-Mg nucleation in a boundary layer at the brucite-water interface.
View Article and Find Full Text PDFEsters of phosphoric acid constitute a large fraction of the total organic phosphorus (OP) in the soil environment and, thus, play an important role in the global phosphorus cycle. These esters, such as glucose-6-phosphate (G6P), exhibit unusual reactivity toward various mineral particles in soils, especially those containing calcite. Many important processes of OP transformation, including adsorption, hydrolysis, and precipitation, occur primarily at mineral-fluid interfaces, which ultimately governs the fate of organophosphates in the environment.
View Article and Find Full Text PDFAdsorption and subsequent immobilization of orthophosphate on iron oxides is of considerable importance in soil fertility and eutrophication studies. Here, in situ atomic force microscopy (AFM) has been used to probe the interaction of phosphate-bearing solutions with goethite, α-FeOOH, (010) cleavage surfaces. During the dissolution of goethite we observed simultaneous nucleation of nanoparticles (1.
View Article and Find Full Text PDFClassical molecular dynamics simulations of several aqueous alkali halide salt solutions have been used to determine the effect of electrolytes on the structure of water and the hydration properties of calcium ions. Compared with the simulations of Ca(2+) ions in pure liquid water, the frequency of water exchange in the first hydration shell of calcium, which is a fundamental process in controlling the reactivity of calcium(ii) aqua-ions, is drastically reduced in the presence of other electrolytes in solution. The strong stabilization of the hydration shell of Ca(2+) occurs not only when the halide anions are directly coordinated to calcium, but also when the alkali and halide ions are placed at or outside the second coordination shell of Ca(2+), suggesting that the reactivity of the first solvation shell of the calcium ion can be influenced by the specific affinity of other ions in solution for the water molecules coordinated to Ca(2+).
View Article and Find Full Text PDFIn situ atomic force microscopy (AFM) has been used to study the interaction of phosphate-bearing solutions with cerussite, PbCO3, (010) surfaces. During the dissolution of cerussite we observed simultaneous growth of needle-shaped or spherical pyromorphite phases. This occurred at two different pH values and ionic strengths relevant to soil solution conditions.
View Article and Find Full Text PDFThe dissolution and carbonation of portlandite (Ca(OH)2) single crystals was studied by a combination of in situ Atomic Force Microscopy, Scanning Electron Microscopy, and two-dimensional X-ray diffraction. The dissolution of portlandite {0001} surfaces in water proceeds by the formation and expansion of pseudohexagonal etch pits, with edges parallel to ⟨100⟩ directions. Etch pits on {010} surfaces are elongated along ⟨001⟩, with edges parallel to ⟨101⟩.
View Article and Find Full Text PDFEnviron Sci Technol
August 2013
Magnesite growth in chloride and sulfate-rich solutions has been examined at 90 °C in situ using phase-shift interferometry (PSI) and ex situ using atomic force microscopy (AFM) to evaluate the feasibility of cosequestering SO2 and CO2 in Mg-rich rocks. Although sulfate may assist desolvation at the magnesite surface, evidence for enhanced growth was only found at specific surface sites. The overall growth rates fit with those observed for chloride experiments in similarly saturated solutions.
View Article and Find Full Text PDFUnraveling the kinetics of calcium orthophosphate (Ca-P) precipitation and dissolution is important for our understanding of the transformation and mobility of dissolved phosphate species in soils. Here we use an in situ atomic force microscopy (AFM) coupled with a fluid reaction cell to study the interaction of phosphate-bearing solutions with calcite surfaces. We observe that the mineral surface-induced formation of Ca-P phases is initiated with the aggregation of clusters leading to the nucleation and subsequent growth of Ca-P phases on calcite, at various pH values and ionic strengths relevant to soil solution conditions.
View Article and Find Full Text PDFColorectal Dis
February 2011
Aim: This study reports the short- and long-term outcomes of laparostomy for intra-abdominal sepsis.
Method: Twenty-nine sequential patients with intra-abdominal sepsis treated with a laparostomy over 6 years were included.
Results: The median age of the patients was 51 years, postoperative intensive care unit stay was 8 days, postoperative length of hospital stay was 87 days and follow up was 2 years.
The presence of water in the Earth has long been an enigma. However, computer modelling techniques have shown that the adsorption of water onto the fractal surfaces of interplanetary dust particles, which are present in the planetary accretion disk, is sufficiently strong to provide a viable origin of terrestrial water.
View Article and Find Full Text PDFLarge-scale olivine carbonation has been proposed as a potential method for sequestering CO(2) emissions. For in situ carbonation techniques, understanding the relationship between the formation of carbonate and other phases is important to predict the impact of possible passivating layers on the reaction. Therefore, we have conducted reactions of olivine with carbonated saline solutions in unstirred batch reactors.
View Article and Find Full Text PDFThe oxidation state of iron oxide nanoparticles was determined using the two principally different technical realisations of energy filtering TEM, in one case using the JEOL 3010 equipped with a LaB6 cathode and a post-column GIF and in the second, the newly designed LIBRA 200FE equipped with an corrected in-column 90 degrees energy filter and a field emission gun (Schottky emitter). The samples studied were oxide-coated iron nanoparticles, and iron oxide inclusions in feldspars in granites. Five possible candidates exist for the iron-oxide phases: FeO, alpha-Fe2O3 (hematite), gamma-Fe2O3 (maghemite), Fe3O4 (magnetite) or alpha-FeO(OH) (goethite).
View Article and Find Full Text PDFSpicules of calcareous sponges are elaborately shaped skeletal elements that nonetheless show characteristics of calcite single-crystals. Our atomic force microscopic and transmission electron microscopic investigation of the triradiate spicules of the sponge Pericharax heteroraphis reveals a nano-cluster structure with mostly well-aligned small crystal domains and pockets with accumulated domain misalignments. Combined high-resolution and energy-filtering transmission electron microscopy revealed carbon enrichments located in between crystal domain boundaries, which strongly suggests an intercalated network-like proteinaceous organic matrix.
View Article and Find Full Text PDFA selection of recent results illustrating the application of off-axis electron holography to the study of magnetic microstructure in closely-spaced nanoparticles and nanowires is reviewed. Examples are taken from the characterization of FeNi nanoparticle chains, Co nanoparticle rings, two-dimensional arrays of naturally occurring magnetite crystals in minerals, and single crystalline Co nanowires. Approaches that can be used to separate the magnetic signal of interest from the mean inner potential contribution to the measured holographic phase shift are described, and the spatial and phase resolution that can be achieved are discussed.
View Article and Find Full Text PDFPure calcium carbonate (calcite and aragonite) solid materials of different particle size (100-200 microm fragments and millimeter-sized single crystals) were interacted with Pb in aqueous solutions at room temperature under atmospheric PCO2. In the case of the micrometer-sized samples, the macroscopic investigation using a batch-type treatment procedure (solutions between 10 and 1000 mg/L Pb) and ICP-AES, SEM-EDS, and powder-XRD showed that the metal is readily removed from the aqueous media by both materials and indicated the sorption processes (mainly surface precipitation leading to overgrowth of cerussite and hydrocerussite crystals) taking place in parallel with surface dissolution processes. The various processes occurring at the calcium carbonate solid-water interface were clearly distinguished and defined in the case of the millimeter-sized samples interacted with 1000 mg/L Pb using a combination of wet-chemical, in-situ (AFM) and ex-situ (AFM, SEM) microscopic, and surface spectroscopic (XPS, 12C-RBS) techniques.
View Article and Find Full Text PDFUltramicroscopy
September 2003
Nowadays fingerprinting techniques are well established for phase analysis. One of the common problems is the accurate calibration of the energy scale to compare the electron energy loss (ELNES) and to determine the energy shift precisely. One solution to this problem is laterally resolved electron energy loss spectroscopy (EELS), which involves orienting the specimen area or structure of interest, parallel to the energy dispersive direction and dispersing the intensity across the interface as a function of energy.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
March 2003
The study of nucleation and growth mechanisms of salts from aqueous solutions, as a function of supersaturation, is described using both macroscopic and microscopic experiments. In situ observations in a fluid cell in an atomic force microscope (AFM) reveal phenomena not accounted for in standard crystal-growth theories, specifically on the role of the crystal structure of the substrate in controlling spiral growth and two-dimensional nucleation. As a model example, the crystallization of two isostructural salts, BaSO(4) and SrSO(4), is described.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2002
The magnetic microstructure of a natural, finely exsolved intergrowth of submicron magnetite blocks in an ulvöspinel matrix is characterized by using off-axis electron holography in the transmission electron microscope. Single-domain and vortex states in individual blocks, as well as magnetostatic interaction fields between them, are imaged at a spatial resolution approaching the nanometer scale. The images reveal an extremely complicated magnetic structure dominated by the shapes of the blocks and magnetostatic interactions.
View Article and Find Full Text PDF