Publications by authors named "Puthusserickal Hassan"

Deep eutectic solvents (DESs) have gained popularity in various applications due to their improved environmental sustainability and biodegradability. For the present study, several polyhydric alcohols, including ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TEG), and glycerol (Gly), have been used as hydrogen bond donors (HBDs) and choline chloride (ChCl) as a hydrogen bond acceptor (HBA) in a fixed molar ratio to form a homogenous and stable DES. Controlled water mixing into such neat DESs has always been thought to be a quick and efficient method to tune the chemical and thermodynamic properties of DESs.

View Article and Find Full Text PDF

Several reports are available on aggregation-induced emission and its applications in biomedical imaging and other material sciences. However, enhancement of singlet oxygen generation in nanoaggregates is rarely reported. Here, we report the synthesis of , which absorbs at 661 nm (monomer) with a high molar absorption coefficient.

View Article and Find Full Text PDF

The present study discloses the fabrication of efficient p-n heterojunctions using n-type polymeric bulk carbon nitride (b-CN, = 2.7 eV) or exfoliated nanosheets of carbon nitride (NSCN, = 2.9 eV) with p-type spinel ferrite CaFeO (CFO, = 1.

View Article and Find Full Text PDF

The effects of two ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF) and 1-butyl-1-methyl pyrrolidinium tetrafluoroborate ([bmp]BF), on a mixture of phospholipids (PLs) 1,2-dipalmitoyl--glycero-3-phosphatidylcholine (DPPC), 1,2-dipalmitoyl--glycero-3-phosphoethanolamine (DPPE), and 1,2-dipalmitoyl--glycero-3-phosphoglycerol (DPPG) (6:3:1, M/M/M, 70% PL) in combination with 30 mol % cholesterol (CHOL) were investigated in the form of a solvent-spread monolayer and bilayer (vesicle). Surface pressure (π)-area () isotherm studies, using a Langmuir surface balance, revealed the formation of an expanded monolayer, while the cationic moiety of the IL molecules could electrostatically and hydrophobically bind to the PLs on the palisade layer. Turbidity, dynamic light scattering (size, ζ-potential, and polydispersity index), electron microscopy, small-angle X-ray/neutron scattering, fluorescence spectroscopy, and differential scanning calorimetric studies were carried out to evaluate the effects of IL on the structural organization of bilayer in the vesicles.

View Article and Find Full Text PDF

In this work, an injectable in situ depot-forming lipidic lyotropic liquid crystal (L3C) system is developed to codeliver a precisely synchronized combination of chemotherapeutics intratumorally. The developed L3C system is composed of amphiphilic lipids and surfactants, including monoolein, phosphatidylcholine, tocopherol acetate, and d-α-tocopherol polyethylene glycol 1000 succinate. Owing to its amphiphilic nature, the developed formulation can coaccommodate both hydrophobic and hydrophilic chemotherapeutic moieties simultaneously.

View Article and Find Full Text PDF

Extremely short half-life therapeutic molecule nitric oxide (NO) plays significant roles in the functioning of various physiological and pathological processes in the human body, whereas doxorubicin hydrochloride (DOX) is a clinically important anticancer drug widely used in cancer chemotherapy. Thus, the intracellular delivery of these therapeutic molecules is tremendously important to achieve their full potential. Herein, we report a novel approach for the development of highly water-dispersible magnetic nanocarriers for codelivery of NO and DOX.

View Article and Find Full Text PDF

A chemical inhibitor of antiapoptotic protein, BCL2, known as Disarib, suffers poor solubility in aqueous environments; thereby limiting its potential as a chemotherapeutic agent. To overcome this limitation and enhance the therapeutic efficacy of Disarib, we have employed the encapsulation of this small molecule inhibitor within P123 copolymer matrix. Micelles were synthesized using a thin-film hydration technique, and a comprehensive analysis was undertaken to evaluate the resulting micelle properties, including morphology, particle size, intermolecular interactions, encapsulation efficiency, and release characteristics.

View Article and Find Full Text PDF

Glioma refers to the most atypical variant of the malignant central nervous system tumors posturing massive challenge to the research fraternity owing to the flimsy improvement in the patient survival rate over the past years. The aim of the proposed work was developing a diagnostic aid for brain tumors, which could be administered via the non-invasive intranasal route. Since overexpression of folate receptors in the central nervous system tumors is 500 times more than the normal healthy cells, we aimed at fabricating a radiolabeled folate encapsulated micellar delivery system to be given via the nasal route.

View Article and Find Full Text PDF

The Development of reliable and field-compatible detection methods is essential to monitoring and controlling the spread of any global pandemic. We herein report a novel anti-RNA:DNA hybrid (anti-RDH) antibody-based biosensor for visual, colorimetric lateral flow assay, using gold nanoparticles, coupled with transcription-mediated-isothermal-RNA-amplification (TMIRA) for specific and sensitive detection of viral RNA. We have demonstrated its utility for SARS-CoV-2 RNA detection.

View Article and Find Full Text PDF

To address the need for localized chemotherapy against unresectable solid tumors, an injectable in situ depot-forming lipidic lyotropic liquid crystal system (L3CS) is explored that can provide spatiotemporal control over drug delivery. Although liquid crystals have been studied extensively before but their application as an injectable intratumoral depot system for locoregional chemotherapy has not been explored yet. The developed L3CS in the present study is a low-viscosity injectable fluid having a lamellar phase, which transforms into a hexagonal mesophase depot system on subcutaneous or intratumoral injection.

View Article and Find Full Text PDF

Cationic liposomes have become an attractive tool to deliver genes and interfering RNA into cells. Herein, we report the application of spontaneously formed cationic vesicles in mixtures of lecithin and cationic amphiphiles for efficient transfection of plasmid DNA and siRNA into cells. The average hydrodynamic diameter of the phospholipid vesicles was modulated by changing the ratio of dihexadecyldimethylammonium bromide (DDAB) to phospholipid in the vesicles.

View Article and Find Full Text PDF

Exemestane (EXE), a drug used for the treatment of breast cancer, has limited aqueous solubility of 0.08 mg/mL and log P∼ 4.22.

View Article and Find Full Text PDF

Localized drug delivery with sustained elution characteristics from nanocarrier coated stents represents a viable therapeutic approach to circumvent concerns related to coronary stent therapy. We fabricated a Sirolimus (SRL) and Bivalirudin (BIV) releasing nanoparticles (NPs) coated stent for concurrent mitigation of vascular restenosis and acute stent thrombosis. SRL NPs were prepared by nanoprecipitation method whereas the BIV vesicles were generated using hydrophobic ion pair approach followed by micellization phenomenon.

View Article and Find Full Text PDF

Lanreotide peptide (LP) has high affinity to somatostatin receptors like SSTR2 and is commonly used in the treatment of neuro-endocrine tumors. The main objective of this study is to target gold nanoparticles (AuNPs) towards SSTR2-positive cancer cells using lanreotide peptide (LP) as the targeting agent for enhanced tumor uptake and antitumor activity. pH mediated changes in the surface potential of LP and AuNP is used to prepare electrostatically bound AuNP-LP complexes.

View Article and Find Full Text PDF

Development of biologics and biosimilars involves extensive physical and structural characterization, which underlines the further course of its implementation. These characterization techniques require considerable standardization and are labor intensive. It is therefore, important to have an immediate, independent and affordable characterization strategy that may meet the regulatory guidelines.

View Article and Find Full Text PDF

The structure of core-shell micelles formed by nonionic surfactant Triton X-100 (TX-100) in a supercooled glucose-urea melt is investigated by contrast variation small-angle X-ray scattering (SAXS), small angle neutron scattering (SANS), and HR-TEM. Cooling a molten mixture of glucose-urea (weight ratio of 3:2) to room temperature yields a supercooled solvent without crystallization that can be used for trapping micelles of TX-100. By use of a combination of water and glucose-urea mixture at different proportions as solvent for micellization, the scattering length density (SLD) of the solvent can be tuned to match the shell contrast of the micelles.

View Article and Find Full Text PDF

We report the development of pH-labile ascorbic acid-coated magnetic nanocarriers (AMNCs) for effective delivery of the anticancer drug doxorubicin hydrochloride (DOX) to tumor cells. The uniqueness of this drug delivery system lies in the covalent conjugation of DOX through carbamate and hydrazone bonds, resulting in a slow and sustained drug release profile at different environmental acidities. X-ray diffraction and transmission electron microscopy analyses reveal the formation of crystalline single-phase FeO nanoparticles with an average size of 10 nm.

View Article and Find Full Text PDF

Sodium dodecyl sulfate (SDS) is a well-known anionic surfactant that forms micelles in various solvents including supercooled sugar-urea melt. Here, we explore the application of contrast variation small-angle X-ray scattering (SAXS) in discerning the structure and interactions of SDS micelles in aqueous solution and in a room-temperature supercooled solvent. The SAXS patterns can be analyzed in terms of a core-shell ellipsoid model.

View Article and Find Full Text PDF

The self-assembly of small molecules into complex nanoscale structures is driven by the interplay of various noncovalent interactions. It has now become evident that by maneuvering this intermolecular interaction the geometry and interfacial properties of several nanoscale objects can be tamed. In particular, diverse structures such as spheres, rods, worms, ribbons, and vesicles can be produced by tuning the packing of molecules in the aggregate.

View Article and Find Full Text PDF

The isotropic micellar state of Pluronic P123 in the presence and absence of N-alkylpyridinium halide ionic liquids (ILs) is investigated using SANS, DLS, and (1)H NMR studies. The micellar structural parameters are obtained as a function of variation in alkyl chain length, anions, and concentrations of ILs by fitting the SANS scattering data with a model composed of core-shell form factor and a hard sphere structure factor of interaction. Addition of ILs decreases the micellar core, aggregation number, and hard sphere radius of P123 micelles.

View Article and Find Full Text PDF

Dynamic light scattering (DLS) has evolved as a fast, convenient tool for particle size analysis of noninteracting spherical colloids. In this historical review, we discuss the basic principle, data analysis, and important precautions to be taken while analyzing colloids using DLS. The effect of particle interaction, polydispersity, anisotropy, light absorption, and so forth, on measured diffusion coefficient is discussed.

View Article and Find Full Text PDF

Aims: In the present investigation, the feasibility of fabricating novel self-assembled cationic nanocarriers (LeciPlex) containing cetyltrimethylammonium bromide (CTAB) or didodecyldimethylammonium bromide (DDAB) and soybean lecithin using pharmaceutically acceptable biocompatible solvents such as 2-Pyrrolidone (Soluphor P) and diethyleneglycol monoethyl ether (Transcutol) was established.

Materials & Methods: The interaction between DDAB/CTAB and soybean lecithin in the nanocarriers was confirmed by differential scanning calorimetry and in vitro antimicrobial studies. The positive charge on the nanocarriers was confirmed by zeta potential analysis.

View Article and Find Full Text PDF

The present investigation was focused on developing Technetium-99m (⁹⁹(m)Tc)-labeled poly(dl-lactide-co-glycolide) (PLGA) nanoparticles as an alternative to ⁹⁹(m)Tc-labeled sulfur colloid/albumin nanocolloid for sentinel lymph node detection. PLGA nanoparticles were prepared by emulsion solvent evaporation technique and the system was characterized with respect to particle size and morphology. They showed spherical morphology with a mean particle diameter of ∼131 nm and a low polydispersity index indicative of homogenous distribution.

View Article and Find Full Text PDF

Aim: The investigation was aimed at designing a micellar nanocarrier of sumatriptan for nose-to-brain delivery and to identify the probable pathway of drug transport to the brain.

Materials & Methods: Micellar nanocarriers were formulated using various safe and acceptable excipients. Optimized formulation was characterized for particle size by multiangle dynamic light scattering, small-angle neutron scattering and cryo-transmission electron microscopy.

View Article and Find Full Text PDF

Thorium-232 ((232)Th), a natural radionuclide from the actinide family, is abundantly present in monazite and other ores. It is used as one of the prime fuel materials in nuclear industry and may pose an exposure risk to nuclear workers and members of the public. Human erythrocytes, as a classical cellular membrane model, were coincubated with (232)Th in order to elucidate whether this naturally occurring important radionuclide produced perturbations to cell membrane.

View Article and Find Full Text PDF