Publications by authors named "Puthamohan Vinayaga Moorthi"

Background: Diabetic nephropathy (DN) is a grave complication and the most common renal dysfunction of diabetes mellitus. Genetic factors, including Apolipoprotein E (APOE) isoforms, have been implicated in the pathogenesis of DN.

Methods: A total of 577 type 2 Diabetes mellitus subjects were categorized into diabetes non-nephropathic (Controls: n = 321), diabetes nephropathic (DN: n = 256) groups.

View Article and Find Full Text PDF

Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress.

View Article and Find Full Text PDF

Background: Cuproptosis or copper-dependent cell death is a newly identified non-apoptotic cell death pathway which plays a critical role in the development of multiple cancers. Long non-coding RNAs (lncRNAs) are increasingly recognized as crucial regulators of programmed cell death and lung adenocarcinoma (LUAD) development, and a comprehensive understanding of cuproptosis-related lncRNAs may improve prognosis prediction of LUAD. However, few studies have explored the association of cuproptosis-related lncRNAs with the prognosis of LUAD.

View Article and Find Full Text PDF

The advent of bio-nanotechnology has revolutionized nanodrug delivery by improving drug efficacy and safety. Nevertheless, acceptable carriers for therapeutic molecules are one of the most difficult challenges in drug delivery. Graphene material-based (GMB) and polymer-based drug-loaded nanocarriers have both demonstrated clinical advantages in delivering drugs of interest /.

View Article and Find Full Text PDF

Apolipoproteins (APO proteins) are the lipoprotein family proteins that play key roles in transporting lipoproteins all over the body. There are nearly more than twenty members reported in the APO protein family, among which the A, B, C, E, and L play major roles in contributing genetic risks to several disorders. Among these genetic risks, the single nucleotide polymorphisms (SNPs), involving the variation of single nucleotide base pairs, and their contributing polymorphisms play crucial roles in the apolipoprotein family and its concordant disease heterogeneity that have predominantly recurred through the years.

View Article and Find Full Text PDF