Background: Along bacteria, yeasts are common in forages and forage fermentations as spoilage microbes or as additives, yet few studies exist with species-level data on these fungi's occurrence in feedstuff. Active dry yeast and other yeast-based products are also common feed additives in animal husbandry. Here, we aimed to characterize both fermented and non-fermented milking cow feedstuff samples from Hungary to assess their microbial diversity in the first such study from Central Europe.
View Article and Find Full Text PDFThe toxins produced by can significantly inhibit the use of maize. As a result of climate change, toxin production is a problem not only in tropical and subtropical areas but in an increasing number of European countries, including Hungary. The effect of meteorological factors and irrigation on mould colonization and aflatoxin B1 (AFB1) mycotoxin production by were investigated in natural conditions, as well as the inoculation with a toxigenic isolate in a complex field experiment for three years.
View Article and Find Full Text PDFAflatoxins are toxic secondary metabolites produced by spp. found in staple food and feed commodities worldwide. Aflatoxins are carcinogenic, teratogenic, and mutagenic, and pose a serious threat to the health of both humans and animals.
View Article and Find Full Text PDFEnzyme-coupled immunosorbent assays (ELISA) methods are usually validated only for homogenous matrixes like corn and wheat. More complex materials like fermented forages and mixed feed are not targeted for mycotoxin measurement. The low number of ELISA methods found in the literature neither contained the pH set for fermented forages nor dealt with the setting of the matrix:solvent ratio.
View Article and Find Full Text PDFMycotoxin contaminations in the feed and food chain are common. Either directly or indirectly, mycotoxins enter the human body through the consumption of food of plant and animal origin. Bacteria with a high mycotoxin elimination capability can reduce mycotoxin contamination in feed and food.
View Article and Find Full Text PDFAflatoxin contamination can appear in various points of the food chain. If animals are fed with contaminated feed, AFB1 is transformed-among others-to aflatoxin M1 (AFM1) metabolite. AFM1 is less toxic than AFB1, but it is still genotoxic and carcinogenic and it is present in raw and processed milk and all kinds of milk products.
View Article and Find Full Text PDFThe study presents a systematic review of published scientific articles investigating the effects of interventions aiming at aflatoxin reduction at the feed production and animal feeding phases of the milk value chain in order to identify the recent scientific trends and summarize the main findings available in the literature. The review strategy was designed based on the guidance of the systematic review and knowledge synthesis methodology that is applicable in the field of food safety. The Web of Science and EBSCOhost online databases were searched with predefined algorithms.
View Article and Find Full Text PDFAflatoxins (AFs) are among the most harmful fungal secondary metabolites imposing serious health risks on both household animals and humans. The more frequent occurrence of aflatoxins in the feed and food chain is clearly foreseeable as a consequence of the extreme weather conditions recorded most recently worldwide. Furthermore, production parameters, such as unadjusted variety use and improper cultural practices, can also increase the incidence of contamination.
View Article and Find Full Text PDFGlutathione (GSH) is an abundant tripeptide that plays a crucial role in shielding cellular macromolecules from various reactive oxygen and nitrogen species in fungi. Understanding GSH metabolism is of vital importance for deciphering redox regulation in these microorganisms. In the present study, to better understand the GSH metabolism in filamentous fungi, we investigated functions of the and genes in the model fungus These genes are orthologues of and , which are involved in cytosolic GSH degradation in The deletion of , , or both resulted in a moderate increase in the GSH content in mycelia grown on glucose, reduced conidium production, and disturbed sexual development.
View Article and Find Full Text PDFAflatoxins (AFs) are toxic secondary metabolites produced mostly by species. AF contamination entering the feed and food chain has been a crucial long-term issue for veterinarians, medicals, agroindustry experts, and researchers working in this field. Although different (physical, chemical, and biological) technologies have been developed, tested, and employed to mitigate the detrimental effects of mycotoxins, including AFs, universal methods are still not available to reduce AF levels in feed and food in the last decades.
View Article and Find Full Text PDFFvatfA from the maize pathogen Fusarium verticillioides putatively encodes the Aspergillus nidulans AtfA and Schizasaccharomyces pombe Atf1 orthologous bZIP-type transcription factor, FvAtfA. In this study, a ΔFvatfA deletion mutant was constructed and then genetically complemented with the fully functional FvatfA gene. Comparing phenotypic features of the wild-type parental, the deletion mutant and the restored strains shed light on the versatile regulatory functions played by FvAtfA in (i) the maintenance of vegetative growth on Czapek-Dox and Potato Dextrose agars and invasive growth on unwounded tomato fruits, (ii) the preservation of conidiospore yield and size, (iii) the orchestration of oxidative (HO, menadione sodium bisulphite) and cell wall integrity (Congo Red) stress defences and (iv) the regulation of mycotoxin (fumonisins) and pigment (bikaverin, carotenoid) productions.
View Article and Find Full Text PDFThe fungus could be shown to be a viable alternative for biosorption of valuable metals from solution. Fungal biomass can be obtained easily in high quantities as a waste of biofermentation processes, and used in a complex, multi-phase solution mimicking naturally occurring, mining-affected water samples. With test solution formulated after natural conditions, formation of secondary Al and Fe phases co-precipitating Ce was recorded in addition to specific biosorption of rare earth elements.
View Article and Find Full Text PDFSpecies of the highly diverse fungal genus are well-known agricultural pests, and, most importantly, producers of various mycotoxins threatening food safety worldwide. Mycotoxins are studied predominantly from the perspectives of human and livestock health. Meanwhile, their roles are far less known in nature.
View Article and Find Full Text PDFChitin is the second abundant polysaccharide in the world after cellulose. It is a vital structural component of the fungal cell wall but not for plants. In plants, fungi are recognised through the perception of conserved microbe-associated molecular patterns (MAMPs) to induce MAMP-triggered immunity (MTI).
View Article and Find Full Text PDFListeria monocytogenes is a foodborne pathogen, and the detection and differentiation of this bacterium from the nonpathogenic Listeria species are of great importance to the food industry. Differentiation of Listeria species is very difficult, even with the sophisticated MALDI-TOF MS technique because of the close genetic relationship of the species and the usual gene transfer. The present paper emphasizes the difficulties of the differentiation through the standardized detection and confirmation according to ISO 11290-1:1996 and basic available L.
View Article and Find Full Text PDFFungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes.
View Article and Find Full Text PDFThe application of yeasts has great potential in reducing the economic damage caused by toxigenic fungi in the agriculture. Some yeasts may act as biocontrol agents inhibiting the growth of filamentous fungi. These species may also gain importance in the preservation of agricultural products and in the reduction of their mycotoxin contamination, yet the extent of mycotoxin production in the presence of biocontrol agents is relatively less understood.
View Article and Find Full Text PDFSelenium deficiency is a major health problem worldwide for about 1 billion people. Bacterial cells usually possess low tolerance to selenite stress and also low ability to reduce high concentrations of toxic selenite. Here, high tolerance to selenite and selenium bioaccumulation capability were developed in mutated clones of probiotic and starter bacteria including Enterococcus faecium, Bifidobacterium animalis ssp.
View Article and Find Full Text PDFActa Microbiol Immunol Hung
June 2014
Hydrolytic enzyme production is typical of the autolysis in filamentous fungi; however, less attention has been given to the physiological role of the enzymes. Here, the aim was to investigate the possible relation of the chitinolytic enzymes to the changes in the biomass in some filamentous fungi of high importance for pharmaceutical or food industry. In Penicillium and Aspergillus filamentous fungi, which showed different characteristics in submerged cultures, the growth and biomass decline rates were calculated and correlated to the chitinase and N-acetyl-β-D-glucosaminidase enzyme productions.
View Article and Find Full Text PDFThe cell wall integrity (CWI) signaling pathway is responsible for cell wall remodeling and reinforcement upon cell wall stress, which is proposed to be universal in fungal cultures. In Aspergillus nidulans, both the deletion of rlmA encoding the RlmA transcription factor in CWI signaling and low concentrations of the cell wall polymer intercalating agent Congo Red caused significant physiological changes. The gene deletion mutant ΔrlmA strain showed decreased CWI and oxidative stress resistances, which indicated the connection between the CWI pathway and the oxidative stress response system.
View Article and Find Full Text PDFUnder long-term oxidative stress caused by menadione sodium bisulfite, genome-wide transcriptional and proteome-wide translational changes were compared in Aspergillus nidulans vegetative cells. The comparison of proteomic and DNA microarray expression data demonstrated that global gene expression changes recorded with either flip-flop or dendrimer cDNA labeling techniques supported proteome changes moderately with 40% and 34% coincidence coefficients, respectively. Enzyme levels in the glycolytic pathway were alternating, which was a direct consequence of fluctuating gene expression patterns.
View Article and Find Full Text PDFAims: Elucidation of the regulation of ChiB production in Aspergillus nidulans.
Methods And Results: Mutational inactivation of the A. nidulans chiB gene resulted in a nonautolytic phenotype.
Acta Microbiol Immunol Hung
September 2008
Under carbon starvation, Aspergillus nidulans produced a fungal/bacterial type chitinase, ChiB. The chiB gene was cloned and subcloned into pJC40 expression vector containing a 10XHis fusion tag, and the ChiB protein was expressed heterologously in Escherichia coli. Recombinant and native ChiB enzymes shared the same optimal pH ranges and showed similar substrate specificities with endo-acting cleavage patterns.
View Article and Find Full Text PDFThe bulk formation of yeast-like (arthrospore-like) cells were typical in carbon-depleted submerged cultures of the high beta-lactam producer Penicillium chrysogenum NCAIM 00237 strain independently of the nitrogen-content of the culture medium. This morphogenetic switch was still quite common in carbon-starving cultures of the low-penicillin-producer strain P. chrysogenum ATCC 28089 (Wis 54-1255) when the nitrogen-content of the medium was low but was a very rare event in wild-type P.
View Article and Find Full Text PDF