Superluminal light propagation is typically accompanied by significant absorption that might prevent its observation in realistic samples. We propose an all-optical implementation exploiting the two-photon resonance in three-level media to overcome this problem. With several computational methods, we analyze three possible configurations of optically-dressed systems and identify an optimal configuration for superluminal propagation.
View Article and Find Full Text PDFNuclear magnetic resonance (NMR) relaxometry is an analytical method that provides information about molecular environments, even for NMR "silent" molecules (spin-0), by analyzing the properties of NMR signals versus the magnitude of the longitudinal field. Conventionally, this technique is performed at fields much higher than Earth's magnetic field, but our work focuses on NMR relaxometry at zero and ultra-low magnetic fields (ZULFs). Operating under such conditions allows us to investigate slow (bio)chemical processes occurring on a timescale from milliseconds to seconds, which coincide with spin evolution.
View Article and Find Full Text PDFNuclear magnetic resonance (NMR) spectroscopy is a powerful analytical tool used in modern science and technology. Its novel incarnation, based on measurements of NMR signals without external magnetic fields, provides direct access to intramolecular interactions based on heteronuclear scalar J-coupling. The uniqueness of these interactions makes each zero-field NMR spectrum distinct and useful in chemical fingerprinting.
View Article and Find Full Text PDFSearches for pseudo-magnetic spin couplings require implementation of techniques capable of sensitive detection of such interactions. While Spin-Exchange Relaxation Free (SERF) magnetometry is one of the most powerful approaches enabling the searches, it suffers from a strong magnetic coupling, deteriorating the pseudo-magnetic coupling sensitivity. To address this problem, here, we compare, via numerical simulations, the performance of SERF magnetometer and noble-gas-alkali-metal co-magnetometer, operating in a so-called self-compensating regime.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2021
Well-resolved and information-rich -spectra are the foundation for chemical detection in zero-field NMR. However, even for relatively small molecules, spectra exhibit complexity, hindering the analysis. To address this problem, we investigate an example biomolecule with a complex -coupling network─urea, a key metabolite in protein catabolism─and demonstrate ways of simplifying its zero-field spectra by modifying spin topology.
View Article and Find Full Text PDFNuclear magnetic resonance (NMR) spectroscopy is a well-established analytical technique used to study chemicals and their transformations. However, high-field NMR spectroscopy necessitates advanced infrastructure, and even cryogen-free benchtop NMR spectrometers cannot be readily assembled from commercially available components. We demonstrate construction of a portable zero-field NMR spectrometer employing a commercially available magnetometer and investigate its applications in analytical chemistry.
View Article and Find Full Text PDFOrganophosphorus compounds are a wide and diverse class of chemicals playing a crucial role in living organisms. This aspect has been often investigated using nuclear magnetic resonance (NMR), which provides information about molecular structure and function. In this paper, we report the results of theoretical and experimental studies on basic organophosphorus compounds using zero-field NMR, where spin dynamics are investigated in the absence of a magnetic field with the dominant heteronuclear -coupling.
View Article and Find Full Text PDFIn this article, operation of optical magnetometers detecting static (DC) and oscillating (AC) magnetic fields is studied and comparison of the devices is performed. To facilitate the comparison, the analysis is carried out in the same experimental setup, exploiting nonlinear magneto-optical rotation. In such a system, a control over static-field magnitude or oscillating-field frequency provides detection of strength of the DC or AC fields.
View Article and Find Full Text PDFWe present a technique for generating light in an arbitrary polarization state. The technique is based on interference of two orthogonally polarized light beams, whose amplitudes and phases are controlled with a Mach-Zehnder inteferometer with acousto-optic modulators (AOMs) placed in each arm. We demonstrate that via control over amplitudes, phases, and frequencies of acoustic waves driving the AOMs, any polarization state can be synthesized.
View Article and Find Full Text PDFWe review experimental techniques in our laboratory for nuclear magnetic resonance (NMR) in zero and ultralow magnetic field (below 0.1 μT) where detection is based on a low-cost, non-cryogenic, spin-exchange relaxation free Rb atomic magnetometer. The typical sensitivity is 20-30 fT/Hz for signal frequencies below 1 kHz and NMR linewidths range from Hz all the way down to tens of mHz.
View Article and Find Full Text PDFLight shifts are an important source of noise and systematics in optically pumped magnetometers. We demonstrate that the long spin-coherence time in paraffin-coated cells leads to spatial averaging of the vector light shift over the entire cell volume. This renders the averaged vector light shift independent, under certain approximations, of the light-intensity distribution within the sensor cell.
View Article and Find Full Text PDFRev Sci Instrum
June 2016
A dichroic atomic vapor laser lock (DAVLL) system exploiting buffer-gas-filled millimeter-scale vapor cells is presented. This system offers similar stability as achievable with conventional DAVLL system using bulk vapor cells, but has several important advantages. In addition to its compactness, it may provide continuous stabilization in a multi-gigahertz range around the optical transition.
View Article and Find Full Text PDFWe report on the absorption measurements of the liquid-filled pure-silica microstructured optical fibers. The measurements concentrate on spectroscopic analysis of the water solutions of a cationic dye, oxazine 725 perchlorate which, when filling the fiber, demonstrates much stronger absorption signals than observed in bulk with regular cuvettes. The effect is also seen in another cationic dye, but not in anionic dyes.
View Article and Find Full Text PDFWe report zero-field NMR measurements of a viscous organic liquid, ethylene glycol. Zero-field spectra were taken showing resolved scalar spin-spin coupling (J-coupling) for ethylene glycol at different temperatures and water contents. Molecular dynamics strongly affects the resonance linewidth, which closely follows viscosity.
View Article and Find Full Text PDFPhys Rev Lett
February 2014
We report an observation of long-lived spin-singlet states in a 13C-1H spin pair in a zero magnetic field. In 13C-labeled formic acid, we observe spin-singlet lifetimes as long as 37 s, about a factor of 3 longer than the T1 lifetime of dipole polarization in the triplet state. In contrast to common high-field experiments, the observed coherence is a singlet-triplet coherence with a lifetime T2 longer than the T1 lifetime of dipole polarization in the triplet manifold.
View Article and Find Full Text PDFStable topological defects of light (pseudo)scalar fields can contribute to the Universe's dark energy and dark matter. Currently, the combination of gravitational and cosmological constraints provides the best limits on such a possibility. We take an example of domain walls generated by an axionlike field with a coupling to the spins of standard-model particles and show that, if the galactic environment contains a network of such walls, terrestrial experiments aimed at the detection of wall-crossing events are realistic.
View Article and Find Full Text PDFWe discuss nuclear spin comagnetometers based on ultralow-field nuclear magnetic resonance in mixtures of miscible solvents, each rich in a different nuclear spin. In one version thereof, Larmor precession of protons and 19F nuclei in a mixture of thermally polarized pentane and hexafluorobenzene is monitored via a sensitive alkali-vapor magnetometer. We realize transverse relaxation times in excess of 20 s and suppression of magnetic field fluctuations by a factor of 3400.
View Article and Find Full Text PDFMeasurements of the group-birefringence dispersion of a microstructured optical fiber using the wavelength-scanning technique are reported. Resulting interferograms are processed using the continuous wavelet transform. We discuss application of this approach for determination of birefringence of few-mode fibers and show that with careful analysis it is possible to determine birefringence dispersion of the higher-order modes in optical fibers.
View Article and Find Full Text PDFOptical magnetometers measure magnetic fields with extremely high precision and without cryogenics. However, at geomagnetic fields, important for applications from landmine removal to archaeology, they suffer from nonlinear Zeeman splitting, leading to systematic dependence on sensor orientation. We present experimental results on a method of eliminating this systematic error, using the hexadecapole atomic polarization moment.
View Article and Find Full Text PDF