An efficient and a selective charge extraction from a new type of heterostructured material is demonstrated: the quasi-type-II structure formed upon deposition of ZnSe quantum dots on CdSe nanoplatelets, termed as CdSe/ZnSe dots-on-plates (DoPs) heterostructures. Insights into the charge extraction mechanism are gained from the present studies. Quenching experiments on nanoplatelets (NPLs) and DoPs using electron (benzoquinone) and hole (pyridine) quenchers show the possibility of electron extraction leaving behind the hole in the nanostructures.
View Article and Find Full Text PDFWe report a systematic study of the electron-transfer process from CdSe quantum dots (QDs) to the Au tips as a function of the QD diameter and also the size of the Au-tip. For Au-tips smaller than ∼3 nm, that is, when they are still not metallic, a reduction in PL behavior is observed as the excited electrons are transferred from the QD-conduction band to Au, with quenching being higher for larger tips and smaller QDs. A combination of steady state and time-resolved studies establish the mechanism of charge transfer that is further confirmed by dye-degradation studies, showing the possibility of ambient day light photocatalysis.
View Article and Find Full Text PDF