Publications by authors named "Pushpinder Walia"

Transcranial Direct Current Stimulation (tDCS) has demonstrated its potential in enhancing surgical training and performance compared to sham tDCS. However, optimizing its efficacy requires the selection of appropriate brain targets informed by neuroimaging and mechanistic understanding. Previous studies have established the feasibility of using portable brain imaging, combining functional near-infrared spectroscopy (fNIRS) with tDCS during Fundamentals of Laparoscopic Surgery (FLS) tasks.

View Article and Find Full Text PDF

Significance: As trainees practice fundamental surgical skills, they typically rely on performance measures such as time and errors, which are limited in their sensitivity.

Aim: The goal of our study was to evaluate the use of portable neuroimaging measures to map the neural processes associated with learning basic surgical skills.

Approach: Twenty-one subjects completed 15 sessions of training on the fundamentals of laparoscopic surgery (FLS) suture with intracorporeal knot-tying task in a box trainer.

View Article and Find Full Text PDF

Error-based learning is one of the basic skill acquisition mechanisms that can be modeled as a perception-action system and investigated based on brain-behavior analysis during skill training. Here, the error-related chain of mental processes is postulated to depend on the skill level leading to a difference in the contextual switching of the brain states on error commission. Therefore, the objective of this paper was to compare error-related brain states, measured with multi-modal portable brain imaging, between experts and novices during the Fundamentals of Laparoscopic Surgery (FLS) "suturing and intracorporeal knot-tying" task (FLS complex task)-the most difficult among the five psychomotor FLS tasks.

View Article and Find Full Text PDF

Background: The goal of this study was to compare the brain activation patterns of experienced and novice individuals when performing the Fundamentals of Laparoscopic Surgery (FLS) suture with intracorporeal knot tying task, which requires bimanual motor control.

Methods: Twelve experienced and fourteen novice participants completed this cross-sectional observational study. Participants performed three repetitions of the FLS suture with intracorporeal knot tying task in a standard box trainer.

View Article and Find Full Text PDF

Fundamentals of Laparoscopic Surgery (FLS) is a standard education and training module with a set of basic surgical skills. During surgical skill acquisition, novices need to learn from errors due to perturbations in their performance which is one of the basic principles of motor skill acquisition. This study on thirteen healthy novice medical students and nine expert surgeons aimed to capture the brain state during error epochs using multimodal brain imaging by combining functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG).

View Article and Find Full Text PDF

Background: Maladaptive neuroplasticity-related learned response in substance use disorder (SUD) can be ameliorated using noninvasive brain stimulation (NIBS); however, inter-individual variability needs to be addressed for clinical translation.

Objective: Our first objective was to develop a hypothesis for NIBS for learned response in SUD based on a competing neurobehavioral decision systems model. The next objective was to develop the theory by conducting a computational simulation of NIBS of the cortico-cerebello-thalamo-cortical (CCTC) loop in cannabis use disorder (CUD)-related dysfunctional "cue-reactivity"-a construct closely related to "craving"-that is a core symptom.

View Article and Find Full Text PDF

Fundamentals of Laparoscopic Surgery (FLS) is a prerequisite for board certification in general surgery in the USA. In FLS, the suturing task with intracorporeal knot tying is considered the most complex task. Transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (PFC) has been shown to facilitate FLS surgical skill acquisition where 2mA tDCS for 15min with the anode over F3 (10/10 EEG montage) and cathode over F4 has improved performance score in an open knot-tying task.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) has been shown to evoke hemodynamics response; however, the mechanisms have not been investigated systematically using systems biology approaches. Our study presents a grey-box linear model that was developed from a physiologically detailed multi-compartmental neurovascular unit model consisting of the vascular smooth muscle, perivascular space, synaptic space, and astrocyte glial cell. Then, model linearization was performed on the physiologically detailed nonlinear model to find appropriate complexity (Akaike information criterion) to fit functional near-infrared spectroscopy (fNIRS) based measure of blood volume changes, called cerebrovascular reactivity (CVR), to high-definition (HD) tDCS.

View Article and Find Full Text PDF

Surgical skill acquisition may be facilitated with a safe application of transcranial direct current stimulation (tDCS). A preliminary meta-analysis of randomized control trials showed that tDCS was associated with significantly better improvement in surgical performance than the sham control; however, meta-analysis does not address the mechanistic understanding. It is known from skill learning studies that the hierarchy of cognitive control shows a rostrocaudal axis in the frontal lobe where a shift from posterior to anterior is postulated to mediate progressively abstract, higher-order control.

View Article and Find Full Text PDF