The coherent perfect absorption (CPA) occurring in the graphene sheet suspended in air can be utilized to develop an ultrathin, ultra-broadband absorber working in the frequency range from a few hertz (Hz) to terahertz (THz) with perfect absorption. A graphene sheet is studied to induce the CPA to cover radio, microwave and lower THz frequency ranges. A graphene resonator able to provide the surface plasmon resonance (SPR) is combined with the graphene sheet to provide CPA at either side of a thin dielectric layer forms metamaterial structure with the cavity and enhances the absorption bandwidth in the THz region by creating a resonance near quasi-CPA frequency.
View Article and Find Full Text PDFSurface plasmons generated at the graphene dielectric interface can be altered by trapping the electric charge. A technique is implemented for trapping the bipolar electric charge on the graphene surface and arranged in a desired way to enhance the performance of a monolayer graphene metamaterial based tunable, ultrathin, dual narrow band terahertz (THz) absorber. A monolayer graphene sheet placed on the dielectric substrate can provide dual-band resonance by utilizing the surface plasmons of the fundamental and third order mode index and an absorption of more than 99% and 50% can be obtained in the lower and upper band, respectively.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
October 2021
A technique is implemented for altering the multimodal resonance generated in an ultrathin silicon ring resonator-based terahertz (THz) absorber. The absorber provides the dual-band resonance with the excitation of magnetic and electric dipole in the lower and upper band, respectively. The field of magnetic and electric dipoles is altered using a non-resonant graphene ring placed in the center of the generated dipolar arrangement and the tunability and perfect absorption is achieved.
View Article and Find Full Text PDF