Marginal lands have been proposed to produce non-food crop biomass for energy or green materials. For this purpose, the selection, implementation, and growth optimization of plant species on such lands are key elements to investigate to achieve relevant plant yields. Stinging nettle () is a herbaceous perennial that grows spontaneously on contaminated lands and was described as suitable to produce fibers for material applications.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
July 2024
Urban horticulture poses a sustainable form of food production, fosters community engagement and mitigates the impacts of climate change on cities. Yet, it can also be tied to health challenges related to soil contamination. This work builds on a previous study conducted on eleven urban gardens in the city of Vienna, Austria.
View Article and Find Full Text PDFImproved understanding of the complex interaction between plant metabolism, environmental conditions and the plant-associated microbiome requires an interdisciplinary approach: Our hypothesis in our multiomics study posited that several environmental and biotic factors have modulating effects on the microbiome and metabolome of the roots of wild plants. Furthermore, we postulated reciprocal interactions between the root metabolome and microbiome. We investigated the metabolic content, the genetic variability, and the prokaryotic microbiome in the root systems of wild plants at rosette and flowering stages across six distinct locations.
View Article and Find Full Text PDFOver the recent decades, technological advancements have led to a rise in the use of so-called technology-critical elements (TCEs). Environmental monitoring of TCEs forms the base to assess whether this leads to increased anthropogenic release and to public health implications. This study employs an exploratory approach to investigate the distribution of the TCEs Li, Be, V, Ga, Ge, Nb, Sb, Te, Ta, Tl, Bi and the REYs (rare-earth elements including yttrium) in urban aerosol in the city of Vienna, Austria.
View Article and Find Full Text PDFBackground And Aims: Plant Ni uptake in aboveground biomass exceeding concentrations of 1000 μg g in dry weight is defined as Ni hyperaccumulation. Whether hyperaccumulators are capable of mobilizing larger Ni pools than non-accumulators is still debated and rhizosphere processes are still largely unknown. The aim of this study was to investigate rhizosphere processes and possible Ni mobilization by the Ni hyperaccumulator and to test Ni uptake in relation to a soil Ni gradient.
View Article and Find Full Text PDFToxic metal pollution requires significant adjustments in plant metabolism. Here, we show that the plant microbiota plays an important role in this process. The endophytic Sporobolomyces ruberrimus isolated from a serpentine population of Arabidopsis arenosa protected plants against excess metals.
View Article and Find Full Text PDFThe stinging nettle L. is a perennial crop with low fertilizer and pesticide requirements, well adapted to a wide range of environmental conditions. It has been successfully grown in most European climatic zones while also promoting local flora and fauna diversity.
View Article and Find Full Text PDFVisualization and quantification of corrosion processes is essential in materials research. Here we present a new approach for 2D spatiotemporal imaging of metal corrosion dynamics in situ. The approach combines time-integrated Mg flux imaging by diffusive gradients in thin films laser ablation inductively coupled plasma mass spectrometry (DGT LA-ICP-MS) and near real-time pH imaging by planar optodes.
View Article and Find Full Text PDFWhile the Galápagos Islands have been renowned for their unique flora and fauna since the time of Charles Darwin, the soils of the isolated island chain have been mostly overlooked and little information on their heavy metal contents is available. The aim of this study was therefore to examine the total heavy metal (Cd, Co, Cr, Cu, Ni, Pb, U, Zn) contents of soils from the agricultural areas on islands Isabela, Santa Cruz and San Cristóbal, and identify trends with duration of exposure to weathering processes. Additionally, the mobility of these elements was assessed using ammonium nitrate extraction.
View Article and Find Full Text PDFA method using diffusive gradients in thin films (DGT) for the accurate quantification of trace-level (μg L) Sr and Pb concentrations and isotope ratios [(Sr/Sr) and (Pb/Pb)] in labile, bioavailable element fractions in soils is reported. The method is based on a novel poly(tetrafluoroethylene) (PTFE) membrane binding layer with combined di(2-ethyl-hexyl)phosphoric acid (HDEHP) and 4,4'(5')-bis--butylcyclohexano-18-crown-6 (crown-ether) functionality with high selectivity for Sr and Pb (TK100 membrane). Laboratory evaluation of the TK100 DGT showed linear uptake of Sr over time (2-24 h) up to very high Sr mass loadings on TK100 membranes (288 μg cm) and effective performance in the range of pH (3.
View Article and Find Full Text PDFUnlabelled: The remediation of Pb, Cd, and Zn contaminated soil by ex situ EDTA washing was investigated in two pot experiments. We tested the influence of (i) 0, 0.5, 1.
View Article and Find Full Text PDF(PV) and (PQ) are reported to hyperaccumulate arsenic (As) when grown in Asrich soil. Yet, little is known about the impact of their unique As accumulation mechanisms on As transformations and cycling at the soil-root interface. Using a combined approach of two-dimensional (2D), sub-mm scale solute imaging of arsenite (As), arsenate (As), phosphorus (P), manganese (Mn), iron (Fe) and oxygen (O), we found localized patterns of As/As redox transformations in the PV rhizosphere (As/As ratio of 0.
View Article and Find Full Text PDFThe reliable sampling of root exudates in soil-grown plants is experimentally challenging. This study aimed at developing a citrate sampling and mapping technique with millimetre-resolution using DGT (diffusive gradients in thin films) ZrOH-binding gels. Citrate adsorption kinetics, DGT capacity, and stability of ZrOH gels were evaluated.
View Article and Find Full Text PDFPhytomining of nickel (Ni) refers to cropping of selected Ni hyperaccumulator plants on Ni-rich serpentine soils. In this study, the effect of different fertilization regimes on the Ni yield of (syn. ) was evaluated within a field experiment on an Austrian serpentine site.
View Article and Find Full Text PDFspecies have been isolated from a wide range of hosts and environments, including heavy metal-contaminated sites. Here, we present a comprehensive analysis on the phylogenetic distribution and the genetic potential of 70 belonging to 20 different species isolated from heavy metal-contaminated and non-contaminated sites with particular attention to secondary metabolites gene clusters. The analyzed species are divided in three main functional clades.
View Article and Find Full Text PDFRoot transcriptomic profile was comparatively studied in a serpentine (TM) and a non-metallicolous (NTM) population of in order to investigate possible features of Ni hyperaccumulation. Both populations were characterised by contrasting Ni tolerance and accumulation capacity. The growth of the TM population was unaffected by metal excess, while the shoot biomass production in the NTM population was significantly lower in the presence of Ni in the culture medium.
View Article and Find Full Text PDFThis work aimed to investigate the metal accumulation characteristics as well as biogeochemical changes in the rhizosphere and root foraging strategies of this plant species. Previous reports suggested that Noccaea rotundifolia ssp. cepaeifolia is a Zn, Cd and Pb hyperaccumulator.
View Article and Find Full Text PDFNickel (Ni) is used in numerous industrial processes, with large amounts of Ni-rich industrial wastes produced, which are largely sent to landfill. Nickel recovery from waste materials that would otherwise be disposed is of particular interest. Nickel phytomining represents a new technology in which hyperaccumulator plants are cultivated on Ni-rich substrates for commercial metal recovery.
View Article and Find Full Text PDFStable isotopes of cesium (Cs) and strontium (Sr) as well as their radioactive isotopes are of serious environmental concern. The pollution of the biosphere, particularly soil and water has received considerable attention for removal of these contaminants in recent years. Arabidopsis halleri (A.
View Article and Find Full Text PDFHuman activities lead to increasing concentration of the stable elements cesium (Cs) and strontium (Sr) and their radioactive isotopes in the food chain, where plants play an important part. Here we investigated Plantago major under the influence of long-term exposure to stable Cs and Sr. The plants were cultivated hydroponically in different concentrations of cesium sulfate (between 0.
View Article and Find Full Text PDFPhytomining of nickel (Ni) is based on the cropping of Ni hyperaccumulators on Ni-rich serpentine soils. The efficiency of this approach is dependent on shoot nickel concentration and harvestable biomass. In a field experiment conducted on an Austrian serpentine site, the phytomining efficiency of the two plant species Odontarrhena chalcidica (syn.
View Article and Find Full Text PDFPetroleum contamination and its remediation via plant-based solutions have got increasing attention by environmental scientists and engineers. In the current study, the physiological and growth responses of two diesel-tolerant plant species (tolerance limit: 1500-2000 mg/kg), Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus), have been investigated in vegetable oil- and diesel oil-amended soils. A long-term (147-day) greenhouse pot experiment was conducted to differentiate the main focus of the study: physical and chemical effects of oil (vegetable and diesel) in freshly spiked soils via evaluating the plant performance and hydrocarbon degradation.
View Article and Find Full Text PDF