In this study, we aimed to assess the analgesic efficacy of a thermoresponsive polymeric dexamethasone (Dex) prodrug (ProGel-Dex) in a mouse model of osteoarthritis (OA). At 12 weeks post model establishment, the OA mice received a single intra-articular (IA) injection of ProGel-Dex, dose-equivalent Dex, or Saline. Comparing to Saline and Dex controls, ProGel-Dex provided complete and sustained pain relief for >15 weeks according to incapacitance tests.
View Article and Find Full Text PDFA subset of patients undergoing total knee arthroplasty (TKA) for knee osteoarthritis develop debilitating knee stiffness (reduced range of motion) for poorly understood reasons. Dysregulated inflammatory and immune responses to surgery correlate with reduced surgical outcomes, but the dysregulated gene signatures in patients with stiffness after TKA are poorly defined. As a consequence, we are limited in our ability to identify patients at risk of developing poor surgical outcomes and develop preventative approaches.
View Article and Find Full Text PDFIn osteoarthritis (OA), articular chondrocytes display phenotypic and functional changes associated with epigenomic alterations. These changes contribute to the disease progression, which is characterized by dysregulated reparative processes and abnormal extracellular matrix remodeling leading to cartilage degradation. Recent studies using a murine model of posttraumatic OA highlighted the contribution of changes in DNA hydroxymethylation (5hmC) to OA progression.
View Article and Find Full Text PDFThe surgical model of destabilization of the medial meniscus (DMM) has become a gold standard for studying the onset and progression of post-traumatic osteoarthritis (OA). The DMM model mimics clinical meniscal injury, a known predisposing factor for the development of human OA, and permits the study of structural and biological changes over the course of the disease. In addition, when applied to genetically modified or engineered mouse models, this surgical procedure permits dissection of the relative contribution of a given gene to OA initiation and/or progression.
View Article and Find Full Text PDFDuring osteoarthritis (OA), articular chondrocytes undergo phenotypic changes that resemble developmental patterns characteristic of growth plate chondrocytes. These phenotypic alterations lead to a hypertrophy-like phenotype characterized by altered production of extracellular matrix constituents and increased collagenase activity, which, in turn, results in cartilage destruction in OA disease. Recent studies have shown that the phenotypic instability and dysregulated gene expression in OA are associated with changes in DNA methylation patterns.
View Article and Find Full Text PDFArticular chondrocytes are quiescent, fully differentiated cells responsible for the homeostasis of adult articular cartilage by maintaining cellular survival functions and the fine-tuned balance between anabolic and catabolic functions. This balance requires phenotypic stability that is lost in osteoarthritis (OA), a disease that affects and involves all joint tissues and especially impacts articular cartilage structural integrity. In OA, articular chondrocytes respond to the accumulation of injurious biochemical and biomechanical insults by shifting toward a degradative and hypertrophy-like state, involving abnormal matrix production and increased aggrecanase and collagenase activities.
View Article and Find Full Text PDFMesenchymal cell condensation is the initiating event in endochondral bone formation. Cell condensation is followed by differentiation into chondrocytes, which is accompanied by induction of chondrogenic gene expression. Gene mutations involved in chondrogenesis cause chondrodysplasias and other skeletal defects.
View Article and Find Full Text PDFAdv Wound Care (New Rochelle)
October 2013
Objective: Angiogenesis is an essential component of normal cutaneous wound repair, but is altered in pathogenic forms of wound healing, such as chronic wounds and fibrosis. We previously reported that endothelial expression of integrin αβ is developmentally regulated, with αβ expression correlating with tissue maturation and further showed that endothelial αβ is downregulated in explant angiogenesis assays. These data support the hypothesis that dynamic regulation of αβ may play an important role during new vessel formation in healing wounds.
View Article and Find Full Text PDFThe extracellular matrix (ECM) is an intricate network of proteins that surrounds cells and has a central role in establishing an environment that is conducive to tissue-specific cell functions. In the case of stem cells, this environment is the stem cell niche, where ECM signals participate in cell fate decisions. In this Commentary, we describe how changes in ECM composition and mechanical properties can affect cell shape and stem cell differentiation.
View Article and Find Full Text PDFPluripotent cells are attached to the extracellular matrix (ECM) as they make cell fate decisions within the stem cell niche. Here we show that the ubiquitous ECM protein fibronectin is required for self-renewal decisions by cultured mouse embryonic stem (mES) cells. Undifferentiated mES cells produce fibronectin and assemble a fibrillar matrix.
View Article and Find Full Text PDFIn the process of matrix assembly, multivalent extracellular matrix (ECM) proteins are induced to self-associate and to interact with other ECM proteins to form fibrillar networks. Matrix assembly is usually initiated by ECM glycoproteins binding to cell surface receptors, such as fibronectin (FN) dimers binding to α5ß1 integrin. Receptor binding stimulates FN self-association mediated by the N-terminal assembly domain and organizes the actin cytoskeleton to promote cell contractility.
View Article and Find Full Text PDFThe wound microenvironment comprises constituents, such as the extracellular matrix (ECM), that regulate with temporal and spatial precision, the migratory, proliferative, and contractility of wound cells. Prompt closure of the wound is an early and critical phase of healing and beta1 integrins are important in this process. We previously reported a marked increase in integrin alpha9beta1 expression in epidermal keratinocytes in cutaneous and corneal wounds.
View Article and Find Full Text PDFThe fibronectins (FN) comprise a family of adhesive extracellular matrix proteins thought to mediate important functions in cutaneous wounds. Plasma fibronectin (pFN) extravasates for days from intact hyperpermeable vessels following injury whereas mRNAs encoding the cellular fibronectins (cFN) that include two segments, termed EIIIA (EDA) and EIIIB (EDB), are expressed by wound cells. Wounds in mice null for pFN appear to heal normally whereas those in EIIIA null mice exhibit defects, suggesting that cFN may play a role when pFN is missing.
View Article and Find Full Text PDF