Publications by authors named "Purushottam Lamichhane"

Background: Ovarian cancer (OC), a highly lethal cancer in women, has a 48% 5-year overall survival rate. Prior studies link the presence of IL-17 and Th17 T cells in the tumor microenvironment to improved survival in OC patients. To determine if Th17-inducing vaccines are therapeutically effective in OC, we created a murine model of Th17-inducing dendritic cell (DC) (Th17-DC) vaccination generated by stimulating IL-15 while blocking p38 MAPK in bone marrow-derived DCs, followed by antigen pulsing.

View Article and Find Full Text PDF

Unlabelled: Pancreatic ductal adenocarcinoma (PDAC) is a significant contributor to cancer-related morbidity and mortality, and it is known for its resistance to conventional treatment regimens, including chemotherapy and immune checkpoint blockade (ICB)-based therapies. We have previously shown that Urolithin A (Uro A), a gut microbial metabolite derived from pomegranates, can target and inhibit -dependent PI3K/AKT/mTOR signaling pathways to overcome therapeutic resistance and improve survival in PDAC. However, the effect of Uro A on the tumor immune microenvironment and its ability to enhance ICB efficacy has not been explored.

View Article and Find Full Text PDF

Background & Aims: We have shown that reciprocally activated rat sarcoma (RAS)/mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) and Janus kinase/signal transducer and activator of transcription 3 (STAT3) pathways mediate therapeutic resistance in pancreatic ductal adenocarcinoma (PDAC), while combined MEK and STAT3 inhibition (MEKi+STAT3i) overcomes such resistance and alters stromal architecture. We now determine whether MEKi+STAT3i reprograms the cancer-associated fibroblast (CAF) and immune microenvironment to overcome resistance to immune checkpoint inhibition in PDAC.

Methods: CAF and immune cell transcriptomes in MEKi (trametinib)+STAT3i (ruxolitinib)-treated vs vehicle-treated Ptf1a;LSL-KrasTgfbr2 (PKT) tumors were examined via single-cell RNA sequencing (scRNAseq).

View Article and Find Full Text PDF

The advent of novel immunotherapies in the treatment of cancers has dramatically changed the landscape of the oncology field. Recent developments in checkpoint inhibition therapies, tumor-infiltrating lymphocyte therapies, chimeric antigen receptor T cell therapies, and cancer vaccines have shown immense promise for significant advancements in cancer treatments. Immunotherapies act on distinct steps of immune response to augment the body's natural ability to recognize, target, and destroy cancerous cells.

View Article and Find Full Text PDF

Tuberculosis (TB), caused by the bacterial organism , pose a major threat to public health, especially in middle and low-income countries. Worldwide in 2018, approximately 10 million new cases of TB were reported to the World Health Organization (WHO). There are a limited number of medications available to treat TB; additionally, multi-drug resistant TB and extensively-drug resistant TB strains are becoming more prevalent.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most common types of cancer worldwide. There are many factors that predispose a patient to the disease such as age, family history, ethnicity, and lifestyle. There are different genetic factors and diseases that also increase a person's risk for developing CRC.

View Article and Find Full Text PDF

The interaction of the host immune system with tumor cells in the tissue microenvironment is essential in understanding tumor immunity and development of successful cancer immunotherapy. The presence of lymphocytes in tumors is highly correlated with an improved outcome. T cells have a set of cell surface receptors termed immune checkpoints that when activated suppress T cell function.

View Article and Find Full Text PDF

Checkpoint inhibition (CPI) therapies have been proven to be powerful clinical tools in treating cancers. FDA approvals and ongoing clinical development of checkpoint inhibitors for treatment of various cancers highlight the immense potential of checkpoint inhibitors as anti-cancer therapeutics. The occurrence of immune-related adverse events, however, is a major hindrance to the efficacy and use of checkpoint inhibitors as systemic therapies in a wide range of patients.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy and is highly resistant to standard treatment regimens. Targeted therapies against , a mutation present in an overwhelming majority of PDAC cases, have been largely ineffective. However, inhibition of downstream components in the KRAS signaling cascade provides promising therapeutic targets in the management of PDAC and warrants further exploration.

View Article and Find Full Text PDF

Checkpoint inhibition (CPI) has been a rare success story in the field of cancer immunotherapy. Knowledge gleaned from preclinical studies and patients that do not respond to these therapies suggest that the presence of tumor-infiltrating lymphocytes and establishment of immunostimulatory conditions, prior to CPI treatment, are required for efficacy of CPI. To this end, radiation therapy (RT) has been shown to promote immunogenic cell-death-mediated tumor-antigen release, increase infiltration and cross-priming of T cells, and decreasing immunosuppressive milieu in the tumor microenvironment, hence allowing CPI to take effect.

View Article and Find Full Text PDF

Although smoking is a significant risk factor for pancreatic ductal adenocarcinoma (PDAC), the molecular mechanisms underlying PDAC development and progression in smokers are still unclear. Here, we show the role of cyclic AMP response element-binding protein (CREB) in the pathogenesis of smoking-induced PDAC. Smokers had significantly higher levels of activated CREB when compared with nonsmokers.

View Article and Find Full Text PDF

Major contributors to therapeutic resistance in pancreatic ductal adenocarcinoma (PDAC) include mutations, a dense desmoplastic stroma that prevents drug delivery to the tumor, and activation of redundant signaling pathways. We have previously identified a mechanistic rationale for targeting STAT3 signaling to overcome therapeutic resistance in PDAC. In this study, we investigate the molecular mechanisms underlying the heterogeneous response to STAT3 and RAS pathway inhibition in PDAC.

View Article and Find Full Text PDF

Ligation of programmed cell death-1 (PD-1) in the tumor microenvironment is known to inhibit effective adaptive antitumor immunity. Blockade of PD-1 in humans has resulted in impressive, durable regression responses in select tumor types. However, durable responses have been elusive in ovarian cancer patients.

View Article and Find Full Text PDF

The PD-1:PD-L1 immune signaling axis mediates suppression of T-cell-dependent tumor immunity. PD-1 expression was recently found to be upregulated on tumor-infiltrating murine (CD11c(+)CD11b(+)CD8(-)CD209a(+)) and human (CD1c(+)CD19(-)) myeloid dendritic cells (TIDC), an innate immune cell type also implicated in immune escape. However, there is little knowledge concerning how PD-1 regulates innate immune cells.

View Article and Find Full Text PDF

Dendritic cells (DCs) play a pivotal role in the tumor microenvironment, which is known to affect disease progression in many human malignancies. Infiltration by mature, active DCs into the tumors confers an increase in immune activation and recruitment of disease-fighting immune effector cells and pathways. DCs are the preferential target of infiltrating T cells.

View Article and Find Full Text PDF

Clinical outcomes, such as recurrence-free survival and overall survival, in ovarian cancer are quite variable, independent of common characteristics such as stage, response to therapy, and grade. This disparity in outcomes warrants further exploration and therapeutic targeting into the interaction between the tumor and host. One compelling host characteristic that contributes both to the initiation and progression of ovarian cancer is the immune system.

View Article and Find Full Text PDF

Immunosuppression in the tumor microenvironment blunts vaccine-induced immune effectors. PD-1/B7-H1 is an important inhibitory axis in the tumor microenvironment. Our goal in this study was to determine the effect of blocking this inhibitory axis during and following vaccination against breast cancer.

View Article and Find Full Text PDF