A biocatalytic membrane offers an ideal alternative to the conventional treatment process for the removal of toxic pentachlorophenol (PCP). The limelight of the study is to utilize superparamagnetic iron oxide nanoparticles (SPIONs) incorporated (poly (methyl vinyl ether-alt-maleic acid) (PMVEAMA) and poly (ether - ether) sulfone (PEES)) membrane for immobilization of laccase and its application towards the removal of PCP. In regard to immobilization of Tramates versicolor laccase onto membranes, 5 mM glutaraldehyde with 10 h cross-linking time was employed, yielding 76.
View Article and Find Full Text PDFComposite polymeric membranes with enhanced anti-fouling properties, antimicrobial activities and flux were produced via the phase inversion technique using poly (ether-ether-sulfone) (PEES)/polyethylene glycol (PEG) and n-ZnO. SEM and ATR-FTIR spectroscopy were used to study the morphological and chemical properties of the resulting ultrafiltration membranes. PEG and n-ZnO concentration has an effect on membrane morphologies, ultrafiltration performance, thermal characteristics, metal ion separation studies, surface hydrophilicity and anti-fouling capabilities.
View Article and Find Full Text PDFIndustrial wastewater contains heavy metals, colors, dyes, cyanides, and natural manufactured compounds are expanding around the world. It prompts extreme water shortage just as water quality issues. With enhancing worldwide interest for clean and reestablish water for human utilization.
View Article and Find Full Text PDFThis study explains the use of a ultrafiltration membrane made of polyvinyl pyrrolidone (PVP) and poly(ether ether sulfone) (PEES)/Nano-titania (n-TiO) for the separation of organic compounds. The results of the tests for porosity, water content, surface chemistry, membrane morphology, and contact angle demonstrated that the developed membranes have more hydrophilicity than PEES membranes due to the redundant hydrophilic nature of PVP and n-TiO. The membrane pure water flux, which contains 5 wt% PVP and 1.
View Article and Find Full Text PDFMembrane fouling is one of the challenging bottleneck problems in waste water treatment by membrane process. The present study constructed a nanofiltration membrane based on the zinc oxide nanoparticle (n-ZnO) integrated Poly(ether ether sulfone) (PEES) membranes. The developed membranes were characterized by X-ray diffraction (XRD), attenuated total reflectance - fourier transform infrared spectroscopy (AT-FTIR), atomic force microscopy (AFM) and scanning electron microscope (SEM) coupled with energy dispersive X-ray (EDX) analysis.
View Article and Find Full Text PDFIn the present study, highly pure rhamnolipids (RLs) was produced using biocatalysts immobilized on amino-functionalized chitosan coated magnetic nanoparticles. Upon immobilizing naringinase and Candida antarctica lipase B (CaLB) under the optimized conditions, an enhanced operational stability with biocatalytic loads of 935 ± 2.4 U/g (naringinase) and 825 ± 4.
View Article and Find Full Text PDF