Mechanisms by which G-patch activators tune the processive multi-tasking ATP-dependent RNA helicase Prp43 (DHX15 in humans) to productively remodel diverse RNA:protein complexes remain elusive. Here, a comparative study between a herein and previously characterized activators, Tma23 and Pxr1, respectively, defines segments that organize Prp43 function during ribosome assembly. In addition to the activating G-patch, we discover an inhibitory segment within Tma23 and Pxr1, I-patch, that restrains Prp43 ATPase activity.
View Article and Find Full Text PDFThe ribotoxin α-sarcin belongs to a family of ribonucleases that cleave the sarcin/ricin loop (SRL), a critical functional rRNA element within the large ribosomal subunit (60S), thereby abolishing translation. Whether α-sarcin targets the SRL only in mature 60S subunits remains unresolved. Here, we show that, in yeast, α-sarcin can cleave SRLs within late 60S pre-ribosomes containing mature 25S rRNA but not nucleolar/nuclear 60S pre-ribosomes containing 27S pre-rRNA in vivo.
View Article and Find Full Text PDFEukaryotic ribosome precursors acquire translation competence in the cytoplasm through stepwise release of bound assembly factors, and proofreading of their functional centers. In case of the pre-60S, these steps include removal of placeholders Rlp24, Arx1 and Mrt4 that prevent premature loading of the ribosomal protein eL24, the protein-folding machinery at the polypeptide exit tunnel (PET), and the ribosomal stalk, respectively. Here, we reveal that sequential ATPase and GTPase activities license release factors Rei1 and Yvh1 to trigger Arx1 and Mrt4 removal.
View Article and Find Full Text PDF