Publications by authors named "Purificacion Feijoo"

Breast cancer is the most common malignant disease in women, but some basic questions remain in breast cancer biology. To answer these, several cell models were developed. Recently, the use of improved cell-culture conditions has enabled the development of a new primary cell model with certain luminal characteristics.

View Article and Find Full Text PDF

Virtually all human cancers display chromosome instability (CIN), a condition in which chromosomes are gained or lost at a high rate. CIN occurs early in cancer development where it may undermine the advance of the neoplastic disease. With the aim of establishing the mechanisms underlying CIN in cancer, we investigated possible links between telomere-dysfunction and centrosome defects, which were seen to coincide in early in breast carcinogenesis using human mammary epithelial cells (HMECs).

View Article and Find Full Text PDF

Most cancer genomes show abnormalities in chromosome structure and number, two types of aberrations that could share a common mechanistic origin through proliferation-dependent loss of telomere function. Impairment of checkpoints that limit cell proliferation when telomeres are critically short might allow unrestrained cell division. The resulting uncapped chromosomes can fuse to each other, forming unstable configurations that can bridge during mitosis.

View Article and Find Full Text PDF

Concerned about the risks of mammography screening in the adult population, we analyzed the ability of human mammary epithelial cells to cope with mammogram-induced DNA damage. Our study shows that an X-ray dose of 20 mGy, which is the standard dose received by the breast surface per two-view mammogram X-ray exploration, induces increased frequencies of DNA double-strand breaks to in vitro aged-but not to young-human mammary epithelial cells. We provide evidence that aged epithelial breast cells are more radiosensitive than younger ones.

View Article and Find Full Text PDF