Garlic is cultivated worldwide for the value of its bulbs, but its cultivation is challenged by the infertility of commercial cultivars and the accumulation of pathogens over time, which occurs as a consequence of vegetative (clonal) propagation. In this review, we summarize the state of the art of garlic genetics and genomics, highlighting recent developments that will lead to its development as a modern crop, including the restoration of sexual reproduction in some garlic strains. The set of tools available to the breeder currently includes a chromosome-scale assembly of the garlic genome and multiple transcriptome assemblies that are furthering our understanding of the molecular processes underlying important traits like the infertility, the induction of flowering and bulbing, the organoleptic properties and resistance to various pathogens.
View Article and Find Full Text PDFThe hydrolate byproduct resulting from the industrial essential oil extraction of Spanish purple garlic has been studied against the root-knot nematode by in vitro and in vivo bioassays. The essential oil, the hydrolate and its organic fraction caused high mortality of juveniles, suppressed egg hatch, and reduced nematode infection and reproduction on tomato plants. The nematicidal compounds of garlic oil, diallyl disulfide and diallyl trisulfide, were the major components of the hydrolate organic fraction.
View Article and Find Full Text PDFThis study set out to determine the distribution of sulfur compounds and saponin metabolites in different parts of garlic cloves. Three fractions from purple and white garlic ecotypes were obtained: the tunic (SS), internal (IS) and external (ES) parts of the clove. Liquid Chromatography coupled to High Resolution Mass spectrometry (LC-HRMS), together with bioinformatics including Principal Component Analysis (PCA), Hierarchical Clustering (HCL) and correlation network analyses were carried out.
View Article and Find Full Text PDF