Publications by authors named "Purevjargal Naidansuren"

Objective: Y chromosome microdeletions are the second most common genetic cause of male infertility after Klinefelter syndrome. The aim of this study was to determine the patterns of Y chromosome microdeletions among infertile Mongolian men.

Methods: A descriptive study was performed on 75 infertile men from February 2017 to December 2018.

View Article and Find Full Text PDF

Peroxidasin (PXDN) has been reported to crosslink the C-terminal non-collagenous domains of collagen IV (Col IV) by forming covalent sulfilimine bond. Here, we explored the physiological role of PXDN and its mechanism of action in endothelial cell survival and growth. Silencing of PXDN using siRNAs decreased cell proliferation without increase of the number of detached cells and decreased cell viability under serum-starved condition with increased fragmented nuclei and caspase 3/7 activity.

View Article and Find Full Text PDF

The recombinant kringle domain of urokinase (UK1) has been shown to inhibit angiogenesis and brain tumor growth . To avoid limitations in application due to mass production of recombinant protein, we attempted to develop a novel peptide inhibitor from UK1 sequence consisting of 83 amino acids that contains α-helices, loops and β-sheets. We dissected UK1 sequence to seven peptides based on structure and amino acid characteristics, and examined the anti-angiogenic activities for the constructed peptides.

View Article and Find Full Text PDF

Background: Dimeric human erythropoietin (dHuEPO) peptides are reported to exhibit significantly higher biological activity than the monomeric form of recombinant EPO. The objective of this study was to produce transgenic (tg) mice expressing dHuEPO and to investigate the characteristics of these mice.

Methods: A dHuEPO-expressing vector under the control of the goat beta-casein promoter, which produced a dimer of human EPO molecules linked by a 2-amino acid peptide linker (Asp-Ile), was constructed and injected into 1-cell fertilized embryos by microinjection.

View Article and Find Full Text PDF

Background: The aldo-keto reductase family 1 member C1 (AKR1C1) belongs to a superfamily of NADPH-dependent reductases that convert a wide range of substrates, including carbohydrates, steroid hormones, and endogenous prostaglandins. The 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD) is a member of AKR family. The aims of this study were to determine its expression in the ovary and uterus endometrium during the estrous cycle and pregnancy.

View Article and Find Full Text PDF

The enzyme 20α-hydroxysteroid dehydrogenase (20α-HSD) catalyzes the conversion of progesterone to its inactive form, 20α-hydroxyprogesterone. This enzyme plays a critical role in the regulation of luteal function in female mammals. In this study, we conducted the characterization and functional analyses of bovine 20α-HSD from placental and ovarian tissues.

View Article and Find Full Text PDF

This study was conducted to characterize and functionally analyze the monkey 20α-hydroxysteroid dehydrogenase (20α-HSD) in the ovary, placenta, and oviduct. We focused on 20α-HSD mRNA expression and protein localization in monkey reproductive tissues and the molecular characterization of the promoter region. Reverse transcription-polymerase chain reaction (RT-PCR) monkey 20α-HSD mRNA was more strongly detected in the ovary at pre-ovulation than in the placenta and oviduct at pre-parturition.

View Article and Find Full Text PDF