In robotics, deep learning models are used in many visual perception applications, including the tracking, detection and pose estimation of robotic manipulators. The state of the art methods however are conditioned on the availability of annotated training data, which may in practice be costly or even impossible to collect. Domain augmentation is one popular method to improve generalization to out-of-domain data by extending the training data set with predefined sources of variation, unrelated to the primary task.
View Article and Find Full Text PDFManipulation of deformable objects has given rise to an important set of open problems in the field of robotics. Application areas include robotic surgery, household robotics, manufacturing, logistics, and agriculture, to name a few. Related research problems span modeling and estimation of an object's shape, estimation of an object's material properties, such as elasticity and plasticity, object tracking and state estimation during manipulation, and manipulation planning and control.
View Article and Find Full Text PDF