Publications by authors named "Purchio A"

Context: Rest, ice, compression, and elevation are commonly recommended immediately after injury. Traditionally, ice bag (IB) with elastic wrap compression has been utilized; however, recently intermittent cryocompression units are being used. Limited research has evaluated tissue temperature decreases with intermittent cryocompression units.

View Article and Find Full Text PDF

Context: Previous research has found ice bags are more effective at lowering intramuscular temperature than gel packs. Recent studies have evaluated intramuscular temperature cooling decreases with ice bag versus Game Ready and with the PowerPlay system wetted ice bag inserts; however, intramuscular temperature decreases elicited by PowerPlay with the standard frozen gel pack inserts have not been examined.

Objective: Evaluate the rate and magnitude of cooling using PowerPlay with frozen gel pack (PP-gel) option, PowerPlay with wetted ice bag (PP-ice) option, and control (no treatment) on skin and intramuscular temperature (2 cm subadipose).

View Article and Find Full Text PDF

We generated a transgenic mouse model (RIP-luc) for the in vivo monitoring of pancreatic islet mass and function in response to metabolic disease. Using the rat insulin promoter fused to firefly luciferase, and noninvasive technology to detect luciferase activity, we tracked changes in reporter signal during metabolic disease states and correlated the changes in luciferase signal with metabolic status of the mouse. Transgene expression was found to be specific to the pancreatic islets in this transgenic model.

View Article and Find Full Text PDF

The infectious yeast Candida albicans is a model organism for understanding the mechanisms of fungal pathogenicity. We describe the functional expression of the firefly luciferase gene, a reporter commonly used to tag genes in many other cellular systems. Due to a non-standard codon usage by this yeast, the CUG codons were first mutated to UUG to allow functional expression.

View Article and Find Full Text PDF

IkappaBalpha is an inhibitor of the nuclear transcription factor NF-kappaB. Binding of IkappaBalpha to NF-kappaB inactivates the transcriptional activity of NF-kappaB. Expression of IkappaBalpha itself is regulated by NF-kappaB, which provides auto-regulation of this signaling pathway.

View Article and Find Full Text PDF

Noninvasive real-time in vivo bioluminescent imaging was used to assess the spread of Streptococcus pneumoniae throughout the spinal cord and brain during the acute stages of bacterial meningitis. A mouse model was established by lumbar (LP) or intracisternal (IC) injection of bioluminescent S. pneumoniae into the subarachnoid space.

View Article and Find Full Text PDF

Many enzymes are therapeutic targets for drug discovery, whereas other enzymes are important for understanding drug metabolism and pharmacokinetics during compound testing in animals. Testing of drug efficacy and metabolism in an animal model requires the measurement of disease endpoints as well as assays of enzyme activity in specific tissues at selected time points during treatment. This requires the removal of tissue and biochemical assays.

View Article and Find Full Text PDF

Using a sensitive transgenic reporter mouse system and in vivo biophotonic imaging techniques, we present a dynamic analysis of eosinophil responses to schistosome infection. Use of this methodology provided previously unattainable detail on the spatial and temporal distribution of tissue eosinophilia and eosinopoietic responses to schistosome worms and eggs. Dramatic hepatic and intestinal eosinophilia in response to the deposition of schistosome eggs, with accompanying eosinopoiesis in the bone marrow, was observed between weeks 8 and 10 p.

View Article and Find Full Text PDF

Acute phase serum amyloid A proteins (A-SAAs) are multifunctional apolipoproteins produced in large amounts during the acute phase of an inflammation and also during the development of chronic inflammatory diseases. In this study we present a Saa1-luc transgenic mouse model in which SAA1 gene expression can be monitored by measuring luciferase activity using a noninvasive imaging system. When challenged with LPS, TNF-alpha, or IL-1beta, in vivo imaging of Saa1-luc mice showed a 1000- to 3000-fold induction of luciferase activity in the hepatic region that peaked 4-7 h after treatment.

View Article and Find Full Text PDF

The GADD45 (growth arrest and DNA damage-inducible) family of genes is involved in the regulation of cell cycle progression and apoptosis. To study signaling pathways affecting GADD45beta expression and to examine systematically in vivo the GADD45beta expression in tissues following various toxic stresses, we created a transgenic mouse by fusing the GADD45beta promoter to firefly luciferase (Gadd45beta-luc). In vivo GADD45beta expression was assessed by measuring the luciferase activity in the Gadd45beta-luc transgenic mouse using a non-invasive imaging system (IVIS Imaging System, Xenogen Corporation).

View Article and Find Full Text PDF

Transgenic mice expressing the luciferase (luc) gene under the control of the heme oxygenase-1 promoter (Ho1) were used to measure the induction of heme oxygenase in response to known toxicants. Transgenic Ho1-luc expression was visualized in vivo using a low-light imaging system (IVIS). Ho1-luc activation was compared to Ho1-luc expression, HO1 protein levels, standard markers of toxicity, and histology.

View Article and Find Full Text PDF

Up-regulation of glial fibrillary acidic protein (GFAP) expression is often used as a surrogate marker of neuronal damage. We have created a transgenic mouse line that carries the luciferase gene under the transcriptional control of the mouse GFAP promoter. Biophotonic imaging was used to non-invasively detect the increase in GFAP expression after kainic acid induced neuronal cell death.

View Article and Find Full Text PDF

Here we describe a transgenic mouse model [Crl:CD-1(ICR)BR-Tg(Cyp1a2-luc)Xen] using luciferase as a reporter for Cyp1a2 gene regulation. An 8.4-kilobase mouse Cyp1a2 promoter driving the firefly luciferase gene was microinjected into single-cell-stage CD-1 mouse embryos.

View Article and Find Full Text PDF

The androgen-dependent regulation for the gene encoding the kidney androgen regulated protein (Kap) was examined in transgenic mice expressing luciferase (luc) under the control of the murine Kap promoter. Biophotonic imaging was used to visualize luciferase expression from the kidneys and various organs that was confirmed using luminometer assays. Kap-luc expression was observed at high levels in kidneys, epididymides, testes, and seminal vesicles in male mice, and in kidneys, ovaries, and uterus in female mice.

View Article and Find Full Text PDF

Previously we described a transgenic mouse model [FVB/NTg(CYP3A4-luc)Xen] using a reporter construct consisting of 13 kilobases of the human CYP3A4 promoter driving the firefly luciferase gene in the inbred FVB/N mouse strain. Here we report regulation of the same CYP3A4-luc reporter gene in a transgenic outbred mouse strain (CD-1) and in a transgenic rat (Sprague-Dawley). Basal reporter expression and responses to several xenobiotics in the transgenic CD-1 mice [CD-1/Crl-Tg(CYP3A4-luc)Xen] were similar to those in the transgenic FVB/N mice.

View Article and Find Full Text PDF

The vascular endothelial growth factor-2 (VEGFR2) gene is transcriptionally regulated during angiogenesis. The ability to monitor and quantify VEGFR2 expression in vivo may facilitate a better understanding of the role of VEGFR2 in different states. Here we describe a transgenic mouse, Vegfr2-luc, in which a luciferase reporter is under control of the murine VEGFR2 promoter.

View Article and Find Full Text PDF

Cytochrome p450 3A4 (CYP3A4) plays an important role in drug metabolism, and the enzymatic activity of CYP3A4 contributes to many adverse drug-drug interactions. Here we describe a transgenic mouse model that is useful in monitoring the in vivo transcriptional regulation of the human CYP3A4 gene. A reporter construct consisting of 13 kilobases of the human CYP3A4 promoter controlling the firefly luciferase gene was used to generate a transgenic mouse line [FVB/N-Tg(CYP3A4-luc)Xen].

View Article and Find Full Text PDF

Molecules of the extracellular matrix (ECM) play important roles in the development and maintenance of myotendinous junctions (MTJs), specialized regions of muscle to bone union. In this report we provide evidence that skeletal muscle cells synthesize the collagen- and fibronectin-binding ECM protein betaIG-H3 and that betaIG-H3 is localized to MTJs. In situ hybridization experiments revealed that during E16.

View Article and Find Full Text PDF

The inducible NO synthase gene (iNOS) plays a role in a number of chronic and acute conditions, including septic shock and contact hypersensitivity autoimmune diseases, such as rheumatoid arthritis, gastrointestinal disorders, and myocardial ischemia. The iNOS gene is primarily under transcriptional control and is induced in a variety of conditions. The ability to monitor and quantify iNOS expression in vivo may facilitate a better understanding of the role of iNOS in different diseases.

View Article and Find Full Text PDF

Human cytochrome P450 3A4 (CYP3A4) is responsible for the metabolism of numerous xenobiotics in the human liver. We have examined the activation of the human CYP3A4 promoter in mouse liver by using in vivo bioluminescent imaging (BLI). Transcription of the CYP3A4 promoter occurs as a result of a ligand binding to a nuclear orphan receptor, pregnane X receptor (PXR), followed by dimerization with another nuclear receptor, retinoid X receptor (RXR).

View Article and Find Full Text PDF

We constructed a cDNA library using mRNA isolated from liver 48 hr after hepatectomy (HX) and screened it by differential hybridization using cDNA from normal and regenerating rat liver. We isolated one clone termed regeneration-associated serpin-1 (rasp-1) that was expressed in normal liver but was upregulated approximately 3-4 fold by 48 hr after HX. DNA sequence analysis of rasp-1 indicated that it encoded a novel 436 amino acid secreted protein.

View Article and Find Full Text PDF

Transforming growth factor-beta (TGF-beta) plays an important role in vascular lesion formation and possibly the renarrowing process ("restenosis") that occurs after balloon angioplasty. Secreted in a latent form by most cells, TFG-beta requires enzymatic conversion before it is biologically active. TGF-beta-inducible gene h3 (beta ig-h3) is a novel molecule that is induced when cells are treated with TGF-beta1.

View Article and Find Full Text PDF

We have investigated the ability of transforming growth factor beta (TGF-beta) to promote the growth and differentiation of chondrocytes in monolayer and on three-dimensional scaffolds. Treatment of chondrocytes with TGF-beta and ascorbate individually stimulated the proliferation of bovine articular chondrocytes about 2-fold when cells were grown in monolayer culture: the combination of TGF-beta and ascorbate resulted in a 3-fold increase in cell number over a 72-h period. Peak stimulation with TGF-beta occurred at about 1.

View Article and Find Full Text PDF

Enhancement of bone ingrowth with transforming growth factor-beta was evaluated in a canine model. Ten dogs had bilateral implantation of a titanium-fiber-metal-coated rod in the proximal part of the humerus. A three-millimeter gap between the outer surface of the porous coating and the surrounding cancellous bone was created to impair bone ingrowth.

View Article and Find Full Text PDF