Publications by authors named "Puran Singh Sijwali"

Article Synopsis
  • Malaria remains a major global health issue due to the absence of an effective vaccine and the rise of drug resistance against existing therapies, particularly artemisinin-based combinations.
  • Recent research focused on diphenylmethylpiperazine and pyrazine-derived molecular hybrids, which showed strong antiplasmodial activity against both drug-susceptible and resistant malaria strains.
  • The study identified HR5 and HR15 as promising new inhibitors with effective concentrations (IC values) indicating strong potential for further development as malaria treatments.
View Article and Find Full Text PDF

Protein ubiquitination is essential for cellular homeostasis and regulation of several processes, including cell division and genome integrity. Ubiquitin E3 ligases determine substrate specificity for ubiquitination, and Cullin-RING E3 ubiquitin ligases (CRLs) make the largest group among the ubiquitin E3 ligases. Although conserved and most studied in model eukaryotes, CRLs remain underappreciated in Plasmodium and related parasites.

View Article and Find Full Text PDF

Malaria is a widespread infectious disease, causing nearly 247 million cases in 2021. The absence of a broadly effective vaccine and rapidly decreasing effectiveness of most of the currently used antimalarials are the major challenges to malaria eradication efforts. To design and develop novel antimalarials, we synthesized a series of 4,7-dichloroquinoline and methyltriazolopyrimidine analogues using a multi-component Petasis reaction.

View Article and Find Full Text PDF

Background & Objectives: COVID-19 has been a global pandemic since early 2020. It has diverse clinical manifestations, but consistent immunological and metabolic correlates of disease severity and protection are not clear. This study was undertaken to compare seropositivity rate, antibody levels against nucleocapsid and spike proteins, virus neutralization and metabolites between adult and child COVID-19 patients.

View Article and Find Full Text PDF

DNA damage inducible 1 protein (DDI1) is involved in a variety of cellular processes including proteasomal degradation of specific proteins. All DDI1 proteins contain a ubiquitin-like (UBL) domain and a retroviral protease (RVP) domain. Some DDI1 proteins also contain a ubiquitin-associated (UBA) domain.

View Article and Find Full Text PDF

Despite a remarkable improvement in health care and continued drug discovery efforts, malaria control efforts are continuously challenged by the emergence of drug-resistant parasite strains. Given a long and risky development path of new drugs, repurposing existing drugs for the treatment of malaria is an attractive and shorter path. Tamoxifen, a selective estrogen receptor modulator (SERM) for the treatment and prevention of estrogen receptor-positive breast cancer, possesses antibacterial, antifungal, and antiparasitic activities.

View Article and Find Full Text PDF

Malaria is a vector-borne disease. It is caused by parasites. is a rodent model parasite, primarily used for studying parasite development in liver cells and vectors.

View Article and Find Full Text PDF

Autophagy, a lysosome-dependent degradative process, does not appear to be a major degradative process in malaria parasites and has a limited repertoire of genes. To better understand the autophagy process, we investigated Plasmodium falciparum Atg18 (PfAtg18), a PROPPIN family protein, whose members like S. cerevisiae Atg18 (ScAtg18) and human WIPI2 bind PI3P and play an essential role in autophagosome formation.

View Article and Find Full Text PDF

A variety of post-translational modifications of Plasmodium falciparum proteins, including phosphorylation and ubiquitination, are shown to have key regulatory roles during parasite development. NEDD8 is a ubiquitin-like modifier of cullin-RING E3 ubiquitin ligases, which regulates diverse cellular processes. Although neddylation is conserved in eukaryotes, it is yet to be characterized in Plasmodium and related apicomplexan parasites.

View Article and Find Full Text PDF

Simple and efficient transfection methods for genetic manipulation of Plasmodium falciparum are desirable to identify, characterize and validate the genes with therapeutic potential and better understand parasite biology. Among the available transfection techniques for P. falciparum, electroporation-based methods, particularly electroporation of ring-infected RBCs is routinely used.

View Article and Find Full Text PDF

The pathogenesis of human malarial parasite is interlinked with its timely control of gene expression during its complex life cycle. In this organism, gene expression is partially controlled through epigenetic mechanisms, the regulation of which is, hence, of paramount importance to the parasite. The (Pf)-GCN5 histone acetyltransferase (HAT), an essential enzyme, acetylates histone 3 and regulates global gene expression in the parasite.

View Article and Find Full Text PDF

Falcipains (FPs), cysteine proteases in the malarial parasite, are emerging as the promising antimalarial drug targets. In order to identify novel FP inhibitors, we generated a pharmacophore derived from the reported co-crystal structures of inhibitors of Plasmodium falciparum Falcipain-3 to screen the ZINC library. Further, the filters were applied for dock score, drug-like characters, and clustering of similar structures.

View Article and Find Full Text PDF

The evasion of host immune defense is critical for pathogens to invade, establish infection and perpetuate in the host. The complement system is one of the first lines of innate immune defense in humans that destroys pathogens in the blood circulation. Activation of the complement system through direct encounter with pathogens or some other agents leads to osmolysis of pathogens, clearance of soluble immune complexes and recruitment of lymphocytes at the site of activation.

View Article and Find Full Text PDF

The biotransformation of the front-line antimalarial drug, artemisinin (1) by the filamentous fungus Aspergillus flavus MTCC-9167 was investigated. Incubation of compound 1 with A. flavus afforded a new hydroxy derivative (2) along with three known metabolites (3-5).

View Article and Find Full Text PDF

Plasmodium falciparum DJ1 (PfDJ1) belongs to the DJ-1/ThiJ/PfpI superfamily whose members are present in all the kingdoms of life and exhibit diverse cellular functions and biochemical activities. The common feature of the superfamily is the class I glutamine amidotransferase domain with a conserved redox-active cysteine residue, which mediates various activities of the superfamily members, including anti-oxidative activity in PfDJ1 and human DJ1 (hDJ1). As the superfamily members represent diverse functional classes, to investigate if there is any sequence feature unique to hDJ1-like proteins, sequences of the representative proteins of different functional classes were compared and analysed.

View Article and Find Full Text PDF

Epoxyazadiradione (1), a major compound derived from Neem oil, showed modest anti-plasmodial activity against CQ-resistant and CQ-sensitive strains of the most virulent human malaria parasite P. falciparum. A series of analogues were synthesized by modification of the key structural moieties of this high yield natural product.

View Article and Find Full Text PDF

Plasmodium sporozoites are the infective forms of malaria parasite to vertebrate host and undergo dramatic changes in their transcriptional repertoire during maturation in mosquito salivary glands. We report here the role of a novel and conserved Plasmodium berghei protein encoded by PBANKA_091090 in maturation of Exo-erythrocytic Forms (EEFs) and designate it as Sporozoite surface Protein Essential for Liver stage Development (PbSPELD). PBANKA_091090 was previously annotated as PB402615.

View Article and Find Full Text PDF

Novel series of naphthyl bearing 1,2,3-triazoles (4a-t) were synthesized and evaluated for their in vitro antiplasmodial activity against pyrimethamine (Pyr)-sensitive and resistant strains of Plasmodium falciparum. The synthesized compounds were assessed for their cytotoxicity employing human embryonic kidney cell line (HEK-293), and none of them was found to be toxic. Among them 4j, 4k, 4l, 4m, 4n, 4t exhibited significant antiplasmodial activity in both strains, of which compounds 4m, 4n and 4t (∼3.

View Article and Find Full Text PDF

Falcipain-3 (FP3) is an essential and drug target cysteine protease of the most lethal human malaria parasite Plasmodium falciparum. FP3 and its majority of homologs in malaria parasites prefer Leu at the P2 position in substrates and inhibitors, whereas its major host homolog cathepsin L prefers Phe. However, FP3 is much less active on peptide substrates and has negligible activity against a P2 Arg-containing substrate (Z-RR-AMC) compared to its paralog falcipain-2A (FP2A).

View Article and Find Full Text PDF

Conventional autophagy is a lysosome-dependent degradation process that has crucial homeostatic and regulatory functions in eukaryotic organisms. As malaria parasites must dispose a number of self and host cellular contents, we investigated if autophagy in malaria parasites is similar to the conventional autophagy. Genome wide analysis revealed a partial autophagy repertoire in Plasmodium, as homologs for only 15 of the 33 yeast autophagy proteins could be identified, including the autophagy marker Atg8.

View Article and Find Full Text PDF

Malaria parasites must respond to stresses and environmental signals to perpetuate efficiently during their multistage development in diverse environments. To gain insights into the parasite's stress response mechanisms, we investigated a conserved Plasmodium protein, which we have named plasmoDJ1 on the basis of the presence of a putative cysteine protease motif of the DJ-1/PfpI superfamily, for its activities, potential to respond to stresses and role in parasite development. PlasmoDJ1 is expressed in all intraerythrocytic stages and ookinetes.

View Article and Find Full Text PDF

Malaria parasites must respond to stresses and environmental signals to perpetuate efficiently during their multistage development in diverse environments. To gain insights into the parasite's stress response mechanisms, we investigated a conserved Plasmodium protein, which we have named plasmoDJ1 on the basis of the presence of a putative cysteine protease motif of the DJ-1/PfpI superfamily, for its activities, potential to respond to stresses and role in parasite development. PlasmoDJ1 is expressed in all intraerythrocytic stages and ookinetes.

View Article and Find Full Text PDF

A series of novel N-alkyl dihydro pyrido quinoxaline derivatives were synthesized using Gould-Jacobs reaction and evaluated their antimalarial activity in vitro against chloroquine sensitive (3D7) and drug resistant (Dd2) strains of Plasmodium falciparum. Among the compounds tested, 10 compounds were more potent than their structural standard analog ciprofloxacin, including 2 derivatives 5e and 5h, which showed 3.3-7.

View Article and Find Full Text PDF

Among key potential drug target proteolytic systems in the malaria parasite Plasmodium falciparum are falcipains, a family of hemoglobin-degrading cysteine proteases, and the ubiquitin proteasomal system (UPS), which has fundamental importance in cellular protein turnover. Inhibition of falcipains blocks parasite development, primarily due to inhibition of hemoglobin degradation that serves as a source of amino acids for parasite growth. Falcipains prefer P2 leucine in substrates and peptides, and their peptidyl inhibitors with leucine at the P2 position show potent antimalarial activity.

View Article and Find Full Text PDF