Objective: To assess the prevalence and the characteristics of pelvic floor dysfunction (PFD) in women with endometriosis.
Methods: This is a methodological paper that describes the 'Endometriosis and Pelvic Floor Dysfunction' (EndoPFD) multicenter study protocol. It involves three sites: the University Hospital of Pisa, the San Raffaele Hospital of Milan and the Vanvitelli University Hospital of Naples.
In 2008, Novartis Animal Health developed a new class of anthelmintics, the amino-acetonitrile derivatives (AAD) of which monepantel is the most prominent compound. Monepantel was designed for the treatment of sheep against the parasitic nematode Haemonchus contortus. Because monepantel acts through a different mechanism, it is effective against nematodes that have acquired resistance to long-standing anthelmintics.
View Article and Find Full Text PDFMonepantel is a member of the recently identified class of anthelmintics known as the amino-acetonitrile derivatives (AADs). Monepantel controls all major gastro-intestinal nematodes in sheep including those that are resistant to the classical anthelmintics. Previous studies have shown that the Caenorhabditis elegans acr-23 and the Haemonchus contortus Hco-mptl-1 genes may be prominent targets of monepantel.
View Article and Find Full Text PDFHow is sex determined? In the animal kingdom, there are diverse sets of mechanisms for determining organismal sex, with the predominant ones being chromosomally based, either a dominant-acting sex chromosome or the ratio of the number of X chromosome to autosomes, which lead to oocyte-producing females and sperm-producing males. The resulting germline sexual phenotype is often the logical consequence of somatic sex determination. In this respect however, the Caenorhabditis elegans hermaphrodite is different from mammals and Drosophila.
View Article and Find Full Text PDFPost-transcriptional control regulates many aspects of germline development in the Caenorhabditis elegans hermaphrodite. This nematode switches from spermatogenesis to oogenesis and is, therefore, capable of self-fertilization. This sperm-oocyte switch requires 3' UTR-mediated repression of the fem-3 mRNA.
View Article and Find Full Text PDFIn Caenorhabditis elegans, germ cells develop as spermatids in the larva and as oocytes in the adult. Such fundamentally different gametes are produced through a fine-tuned balance between feminizing and masculinizing genes. For example, the switch to oogenesis requires repression of the fem-3 mRNA through the mog genes.
View Article and Find Full Text PDFBiochemical purifications from mammalian cells and Xenopus oocytes revealed that vertebrate Mi-2 proteins reside in multisubunit NuRD (Nucleosome Remodeling and Deacetylase) complexes. Since all NuRD subunits are highly conserved in the genomes of C. elegans and Drosophila, it was suggested that NuRD complexes also exist in invertebrates.
View Article and Find Full Text PDFIn the germ line of the Caenorhabditis elegans hermaphrodite, nuclei either proliferate through mitosis or initiate meiosis, finally differentiating as spermatids or oocytes. The production of oocytes requires repression of the fem-3 mRNA by cytoplasmic FBF and nuclear MOG proteins. Here we report the identification of the sex determining gene mog-3 and show that in addition to its role in gamete sex determination, it is necessary for meiosis by acting downstream of GLP-1/Notch.
View Article and Find Full Text PDFBackground: In the hermaphrodite of the nematode Caenorhabditis elegans, the first germ cells differentiate as sperm. Later the germ line switches to the production of oocytes. This process requires the activity of a genetic regulatory network that includes among others the fem, fog and mog genes.
View Article and Find Full Text PDFProgrammed cell death (PCD) is an essential and highly orchestrated process that plays a major role in morphogenesis and tissue homeostasis during development. In humans, defects in regulation or execution of cell death lead to diabetes, neurodegenerative disorders, and cancer. Two major types of PCD have been distinguished: the caspase-mediated process of apoptosis and the caspase-independent process involving autophagy.
View Article and Find Full Text PDFThe switch from spermatogenesis to oogenesis in the Caenorhabditis elegans hermaphrodite requires mog-6, which post-transcriptionally represses the fem-3 RNA. In this study, we show that mog-6 codes for a divergent nuclear cyclophilin, in that a conserved domain is not required for its function in the sperm-oocyte switch. MOG-6 binds to the nuclear zinc finger protein MEP-1 through two separate domains that are essential for the role of MOG-6 in the sperm-oocyte switch.
View Article and Find Full Text PDFCell fates in the Caenorhabditis elegans germline are regulated, at least in part, at the posttranscriptional level. For example, the switch from spermatogenesis to oogenesis in the hermaphrodite relies on posttranscriptional repression of the fem-3 mRNA via its 3' untranslated region (UTR). Previous studies identified three DEAH box proteins, MOG-1, MOG-4, and MOG-5, that are critical for the fem-3 3' UTR control.
View Article and Find Full Text PDFThe Caenorhabditis elegans hermaphrodite sequentially produces sperm and oocytes from a single pool of precursors. Therefore, the hermaphrodite's germ line is the site of two major cell fate decisions: a germ cell precursor first undergoes a mitosis/meiosis decision and then a sperm/oocyte decision. While the mitosis/meiosis decision is governed by Notch/GLP-1 signalling, the sperm/oocyte decision relies on post-transcriptional regulation of two key mRNAs, tra-2 and fem-3.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2000
Sex determination in the hermaphrodite germ line of Caenorhabditis elegans is controlled posttranscriptionally. The switch from spermatogenesis to oogenesis relies on regulation of the fem-3 sex-determining gene via a regulatory element in the fem-3 3' untranslated region. Previous work showed that at least six mog genes are required for repression by the fem-3 3' untranslated region, and that one of those genes, mog-1, encodes a DEAH-box protein.
View Article and Find Full Text PDFSplicing factor SF1 contributes to the recognition of the 3' splice site by interacting with U2AF65 and binding to the intron branch site during the formation of the early splicing complex E. These interactions and the essential functional domains of SF1 are highly conserved in Saccharomyces cerevisiae. We have isolated cDNAs encoding SF1 from Drosophila (Dm) and Caenorhabditis (Ce).
View Article and Find Full Text PDFIn the Caenorhabditis elegans hermaphrodite germ line, the sex-determining gene fem-3 is repressed posttranscriptionally to arrest spermatogenesis and permit oogenesis. This repression requires a cis-acting regulatory element in the fem-3 3' untranslated region; the FBF protein, which binds to this element; and at least six mog genes. In this paper, we report the molecular characterization of mog-1 as well as additional phenotypic characterization of this gene.
View Article and Find Full Text PDFTransepithelial Na+ reabsorption across tight epithelia is regulated by aldosterone. The amiloride-sensitive epithelial sodium channel (ENaC) is a major target for the natriferic action of aldosterone. In this study, the effect of aldosterone on ENaC mRNA abundance and the rate of protein synthesis for each of the three ENaC subunits (alpha, beta and gamma) in the A6 kidney cell line were examined.
View Article and Find Full Text PDFThe nematode Caenorhabditis elegans has two sexes, males and hermaphrodites. Hermaphrodites Initially produce sperm but switch to producing oocytes. This switch appears to be controlled by the 3' untranslated region of fem-3 messenger RNA.
View Article and Find Full Text PDFThe role of small, hydrophobic peptides that are associated with ion pumps or channels is still poorly understood. By using the Xenopus oocyte as an expression system, we have characterized the structural and functional properties of the gamma peptide which co-purifies with Na,K-ATPase. Immuno-radiolabeling of epitope-tagged gamma subunits in intact oocytes and protease protection assays show that the gamma peptide is a type I membrane protein lacking a signal sequence and exposing the N-terminus to the extracytoplasmic side.
View Article and Find Full Text PDFWe have previously identified three homologous subunits alpha, beta, and gamma of the highly selective amiloride-sensitive Na channel from the Xenopus laevis kidney A6 cell line, which forms a tight epithelium in culture. We report here two novel genes, termed beta2 and gamma2, which share 90 and 92% sequence identity with the previously characterized beta and gamma XENaC, respectively. beta2 and gamma2 transcripts were detected in lung, kidney, and A6 cells grown on porous substrate.
View Article and Find Full Text PDFCold Spring Harb Symp Quant Biol
August 1998
Glycosylphosphatidylinositol (GPI) anchors of the yeast Saccharomyces cerevisiae have been reported to contain three different types of side chains attached to contain three different types of side chains attached to the alpha 1,2-linked mannose of the conserved protein-ethanolamine-PO4-Man alpha 1,2Man alpha 1,6Man alpha 1,4GlcNH2-inositol glycan core. The possible side chains are Man alpha 1,2- or Man alpha 1,2Man alpha 1,2- or Man alpha 1,3Man alpha 1,2- (Fankhauser, C., Homan, S.
View Article and Find Full Text PDFIn Na-reabsorbing tight epithelia, the rate-limiting step for Na transport is the highly selective low-conductance amiloride-sensitive epithelial Na channel (type 1 ENaC). In rat distal colon, type 1 ENaC is made of three homologous subunits. The aim of this study was to identify the corresponding genes of the renal channel from the kidney-derived A6 cell line of Xenopus laevis.
View Article and Find Full Text PDFGlycosylphosphatidylinositol (GPI) anchoring of membrane proteins occurs through two distinct steps, namely the assembly of a precursor glycolipid and its subsequent transfer onto newly synthesized proteins. To analyze the structure of the yeast precursor glycolipid we made use of the pmi40 mutant that incorporates very high amounts of [3H]mannose. Two very polar [3H]mannose-labeled glycolipids named CP1 and CP2 qualified as GPI precursor lipids since their carbohydrate head group, Man alpha 1,2(X-->PO4-->6)Man alpha 1,2Man alpha 1,6Man alpha-GlcN-inositol (with X most likely being ethanolamine) comprises the core structure which is common to all GPI anchors described so far.
View Article and Find Full Text PDF