Publications by authors named "Punnam Veerati"

Article Synopsis
  • Primary air liquid interface cultures of bronchial epithelial cells (pBECs) are used to study airway responses, and conditional reprogramming has enhanced their ability to proliferate.
  • The study compared the effects of two culture media (PneumaCult vs. BEGM) on the morphology and immune responses of pBECs after infection with rhinovirus.
  • Results showed that pBECs cultured in PneumaCult were smaller and had lower electrical resistance and cilia activity but exhibited greater cilia and mucin production, highlighting the importance of selecting the right culture medium for specific research questions.
View Article and Find Full Text PDF

Bronchoconstriction is the main physiological event in asthma, which leads to worsened clinical symptoms and generates mechanical stress within the airways. Virus infection is the primary cause of exacerbations in people with asthma, however, the impact that bronchoconstriction itself on host antiviral responses and viral replication is currently not well understood. Here we demonstrate how mechanical forces generated during bronchoconstriction may suppress antiviral responses at the airway epithelium without any difference in viral replication.

View Article and Find Full Text PDF

Primary bronchial epithelial cells (pBECs) obtained from donors have limited proliferation capacity. Recently, conditional reprogramming (CR) technique has overcome this and has provided the potential for extended passaging and subsequent differentiation of cells at air-liquid interface (ALI). However, there has been no donor-specific comparison of cell morphology, baseline gene expression, barrier function, and antiviral responses compared with their "parent" pBECs, especially cells obtained from donors with asthma.

View Article and Find Full Text PDF

IL-25 is implicated in the pathogenesis of viral asthma exacerbations. However, the effect of IL-25 on antiviral immunity has yet to be elucidated. We observed abundant expression and colocalization of IL-25 and IL-25 receptor at the apical surface of uninfected airway epithelial cells and rhinovirus infection increased IL-25 expression.

View Article and Find Full Text PDF

Background And Objective: COVID-19 is complicated by acute lung injury, and death in some individuals. It is caused by SARS-CoV-2 that requires the ACE2 receptor and serine proteases to enter AEC. We determined what factors are associated with ACE2 expression particularly in patients with asthma and COPD.

View Article and Find Full Text PDF

Background: We assessed whether Toll-like receptor (TLR)2 activation boosts the innate immune response to rhinovirus infection, as a treatment strategy for virus-induced respiratory diseases.

Methods: We employed treatment with a novel TLR2 agonist (INNA-X) prior to rhinovirus infection in mice, and INNA-X treatment in differentiated human bronchial epithelial cells derived from asthmatic-donors. We assessed viral load, immune cell recruitment, cytokines, type I and III interferon (IFN) production, as well as the lung tissue and epithelial cell immune transcriptome.

View Article and Find Full Text PDF

Early diagnosis of snake envenomation is essential, especially neurotoxicity and myotoxicity. We investigated the diagnostic value of serum phospholipase (PLA) in Australian snakebites. In total, 115 envenomated and 80 non-envenomated patients were recruited over 2 years, in which an early blood sample was available pre-antivenom.

View Article and Find Full Text PDF

The lung is a mechanically active organ, but uncontrolled or excessive mechanical forces disrupt normal lung function and can contribute to the development of disease. In asthma, bronchoconstriction leads to airway narrowing and airway wall buckling. A growing body of evidence suggests that pathological mechanical forces induced by airway buckling alone can perpetuate disease processes in asthma.

View Article and Find Full Text PDF

Intra-specific venom variation has the potential to provide important insights into the evolution of snake venom, but remains a relatively neglected aspect of snake venom studies. We investigated the venom from 13 individual coastal taipans from four localities on the north-east coast of Australia, spanning a distance of 2000 km. The intra-specific variation in taipan venom was considerably less than the inter-specific variation between it and the other Australian elapids to which it was compared.

View Article and Find Full Text PDF

Respiratory viral infections, particularly those caused by rhinovirus, exacerbate chronic respiratory inflammatory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Airway epithelial cells are the primary site of rhinovirus replication and responsible of initiating the host immune response to infection. Numerous studies have reported that the anti-viral innate immune response (including type I and type III interferon) in asthma is less effective or deficient leading to the conclusion that epithelial innate immunity is a key determinant of disease severity during a rhinovirus induced exacerbation.

View Article and Find Full Text PDF

Patients with frequent exacerbations represent a chronic obstructive pulmonary disease (COPD) subgroup requiring better treatment options. The aim of this study was to determine the innate immune mechanisms that underlie susceptibility to frequent exacerbations in COPD. We measured sputum expression of immune mediators and bacterial loads in samples from patients with COPD at stable state and during virus-associated exacerbations.

View Article and Find Full Text PDF

Inhaled corticosteroids (ICS) have limited efficacy in reducing chronic obstructive pulmonary disease (COPD) exacerbations and increase pneumonia risk, through unknown mechanisms. Rhinoviruses precipitate most exacerbations and increase susceptibility to secondary bacterial infections. Here, we show that the ICS fluticasone propionate (FP) impairs innate and acquired antiviral immune responses leading to delayed virus clearance and previously unrecognised adverse effects of enhanced mucus, impaired antimicrobial peptide secretion and increased pulmonary bacterial load during virus-induced exacerbations.

View Article and Find Full Text PDF

Dysregulated induction of goblet cell differentiation results in excessive production and retention of mucus and is a common feature of several chronic airways diseases. To date, therapeutic strategies to reduce mucus accumulation have focused primarily on altering the properties of the mucus itself, or have aimed to limit the production of mucus-stimulating cytokines. Here we review the current knowledge of key molecular pathways that are dysregulated during persistent goblet cell differentiation and highlights both pre-existing and novel therapeutic strategies to combat this pathology.

View Article and Find Full Text PDF