Publications by authors named "Punkkinen M"

Use and performance criteria of photonic devices increase in various application areas such as information and communication, lighting, and photovoltaics. In many current and future photonic devices, surfaces of a semiconductor crystal are a weak part causing significant photo-electric losses and malfunctions in applications. These surface challenges, many of which arise from material defects at semiconductor surfaces, include signal attenuation in waveguides, light absorption in light emitting diodes, non-radiative recombination of carriers in solar cells, leakage (dark) current of photodiodes, and light reflection at solar cell interfaces for instance.

View Article and Find Full Text PDF

Properties of Ge oxides are significantly different from those of widely used Si oxides. For example, the instability of GeO at device junctions causes electronic defect levels that degrade the performance of Ge-containing devices (e.g.

View Article and Find Full Text PDF

The adsorption of oxygen on bcc Fe-Cr(100) surfaces with two different alloy concentrations is studied using ab initio density functional calculations. Atomic-scale analysis of oxygen-surface interactions is indispensable for obtaining a comprehensive understanding of macroscopic surface oxidation processes. Up to two chromium atoms are inserted into the first two surface layers.

View Article and Find Full Text PDF

Abscisic acid (ABA) is an important phytohormone mediating osmotic stress responses. SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASE 2.6 (SnRK2.

View Article and Find Full Text PDF

Plants adjust to unfavorable conditions by altering physiological activities, such as gene expression. Although previous studies have identified multiple stress-induced genes, the function of many genes during the stress responses remains unclear. Expression of ERD7 (EARLY RESPONSE TO DEHYDRATION 7) is induced in response to dehydration.

View Article and Find Full Text PDF

Low-temperature (LT) passivation methods (<450 °C) for decreasing defect densities in the material combination of silica (SiO) and silicon (Si) are relevant to develop diverse technologies (e.g., electronics, photonics, medicine), where defects of SiO/Si cause losses and malfunctions.

View Article and Find Full Text PDF

X-ray photoelectron spectroscopy (XPS) is one of the most used methods in a diverse field of materials science and engineering. The elemental core-level binding energies (BE) and core-level shifts (CLS) are determined and interpreted in the XPS. Oxidation is commonly considered to increase the BE of the core electrons of metal and semiconductor elements (i.

View Article and Find Full Text PDF

InAs crystals are emerging materials for various devices like radio frequency transistors and infrared sensors. Control of oxidation-induced changes is essential for decreasing amounts of the harmful InAs surface (or interface) defects because it is hard to avoid the energetically favored oxidation of InAs surface parts in device processing. We have characterized atomic-layer-deposition (ALD) grown AlO/InAs interfaces, preoxidized differently, with synchrotron hard X-ray photoelectron spectroscopy (HAXPES), low-energy electron diffraction, scanning tunneling microscopy, and time-of-flight elastic recoil detection analysis.

View Article and Find Full Text PDF

Oxidation treatment creating a well-ordered crystalline structure has been shown to provide a major improvement for III-V semiconductor/oxide interfaces in electronics. We present this treatment's effects on InSb(111)B surface and its electronic properties with scanning tunneling microscopy and spectroscopy. Possibility to oxidize (111)B surface with parameters similar to the ones used for (100) surface is found, indicating a generality of the crystalline oxidation among different crystal planes, crucial for utilization in nanotechnology.

View Article and Find Full Text PDF

We studied deuteron NMR spectra and spin-lattice relaxation of deuterated acetone-d, adsorbed into zeolites NaX (1.3) and NaY(2.4) at 100% coverage of sodium cations.

View Article and Find Full Text PDF

Sucrose non-fermenting 1-related protein kinases (SnRKs) are important for plant growth and stress responses. This family has three clades: SnRK1, SnRK2 and SnRK3. Although plant SnRKs are thought to be activated by upstream kinases, the overall mechanism remains obscure.

View Article and Find Full Text PDF

Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B.

View Article and Find Full Text PDF

We investigate the effect of short-range order (SRO) on the electronic structure in alloys from the theoretical point of view using density of states (DOS) data. In particular, the interaction between the atoms at different lattice sites is affected by chemical disorder, which in turn is reflected in the fine structure of the DOS and, hence, in the outcome of spectroscopic measurements. We aim at quantifying the degree of potential SRO with a proper parameter.

View Article and Find Full Text PDF
Article Synopsis
  • The cuticle serves as a key barrier on plant surfaces, crucial for plant-environment interactions, and its formation is influenced by various environmental stresses.
  • A study on Arabidopsis thaliana identified a signaling loop involving abscisic acid (ABA) that promotes cuticle formation through specific receptors and kinases, with additional factors like DEWAX and several MYB transcription factors playing a significant role.
  • The research also found that low humidity enhances cuticle formation independently of ABA signaling, highlighting the complexity of cuticle regulation and its importance in plant adaptability and immunity.
View Article and Find Full Text PDF

Deuteron NMR spectra and spin-lattice relaxation were studied experimentally in zeolite NaY(2.4) samples containing 100% or 200% of CD3OH or CD3OD molecules of the total coverage of Na atoms in the temperature range 20-150K. The activation energies describing the methyl and hydroxyl motions show broad distributions.

View Article and Find Full Text PDF

Atomic-scale understanding and processing of the oxidation of III-V compound-semiconductor surfaces are essential for developing materials for various devices (e.g., transistors, solar cells, and light emitting diodes).

View Article and Find Full Text PDF

The work of separation and interfacial energy of the Ni(1 1 1)/Cr(1 1 0) interface are calculated via first-principles methods. Both coherent and semicoherent interfaces are considered. We find that magnetism has a significant effect on the interfacial energy, i.

View Article and Find Full Text PDF

We determine the interface energy and the work of separation of the Fe/Cr2O3 interface using first-principles density functional theory. Starting from different structures, we put forward a realistic interface model that is suitable to study the complex metal-oxide interaction. This model has the lowest formation energy and corresponds to an interface between Fe and oxygen terminated Cr2O3.

View Article and Find Full Text PDF

Using ab initio alloy theory, we determine the elastic parameters of ferromagnetic and paramagnetic Fe(1-c)Cr(c) (0 ≤ c ≤ 1) alloys in the body centered cubic crystallographic phase. Comparison with the experimental data demonstrates that the employed theoretical approach accurately describes the observed composition dependence of the polycrystalline elastic moduli. The predicted single-crystal elastic constants follow complex anomalous trends, which are shown to originate from the interplay between magnetic and chemical effects.

View Article and Find Full Text PDF

A new method is introduced for analyzing deuteron spin-lattice relaxation in molecular systems with a broad distribution of activation energies and correlation times. In such samples the magnetization recovery is strongly non-exponential but can be fitted quite accurately by three exponentials. The considered system may consist of molecular groups with different mobility.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) provides means to investigate molecular dynamics at every state of matter. Features characteristic for the gas phase, liquid-like layers and immobilized methanol-d(4) molecules in NaX and NaY zeolites were observed in the temperature range from 300 K down to 20K. The NMR spectra at low temperature are consistent with the model in which molecules are bonded at two positions: horizontal (methanol oxygen bonded to sodium cation) and vertical (hydrogen bonding of hydroxyl deuteron to zeolite framework oxygen).

View Article and Find Full Text PDF

The surface properties of Fe-rich ferromagnetic Fe-Cr alloys are investigated using a first-principles quantum-mechanical method. In dilute alloys, the surfaces are dominated by Fe, whereas the Cr-containing surfaces become favorable when the bulk Cr concentration exceeds the limit of ∼ 10 atomic per cent. The abrupt change in the surface behavior is the consequence of complex competing magneto-chemical interactions between the alloying atoms.

View Article and Find Full Text PDF

Because of the increased electron density within the surface layer, metal surfaces are generally expected to have tensile surface stress. Here, using first-principles density functional calculations, we demonstrate that in magnetic 3d metals surface magnetism can alter this commonly accepted picture. We find that the thermodynamically stable surfaces of chromium and manganese possess compressive surface stress.

View Article and Find Full Text PDF

The polycrystalline elastic parameters of ferromagnetic Fe(1-x)M(x) (M = Al, Si, V, Cr, Mn, Co, Ni, Rh; 0 ≤ x ≤ 0.1) random alloys in the body centered cubic (bcc) crystallographic phase have been calculated using first-principles alloy theory in combination with statistical averaging methods. With a few exceptions, the agreement between the calculated and the available experimental data for the polycrystalline aggregates is satisfactory.

View Article and Find Full Text PDF