Self-organized and excitable signaling activities play important roles in a wide range of cellular functions in eukaryotic and prokaryotic cells. Cells require signaling networks to communicate amongst themselves, but also for response to environmental cues. Such signals involve complex spatial and temporal loops that may propagate as oscillations or waves.
View Article and Find Full Text PDFThe NOD1/2-RIPK2 is a key cytosolic signaling complex that activates NF-κB pro-inflammatory response against invading pathogens. However, uncontrolled NF-κB signaling can cause tissue damage leading to chronic diseases. The mechanisms by which the NODs-RIPK2-NF-κB innate immune axis is activated and resolved remain poorly understood.
View Article and Find Full Text PDFExtensive crosstalk exists between autophagy and innate immune signalling pathways. The stimuli that induce pattern recognition receptor (PRR)-mediated innate immune signalling pathways, also upregulate autophagy. The purpose of this increased autophagy is to eliminate the stimuli and/or suppress the inflammatory pathways by targeted degradation of PRRs or intermediary proteins (termed 'inflammophagy').
View Article and Find Full Text PDFMulti-protein complexes mTORC1 and mTORC2 are required for growth and development of eukaryotes. mTORC1 is a nutrient sensor that integrates metabolic signals and energy state to regulate cell growth/proliferation, whereas, mTORC2 primarily regulates developmental processes. Dictyostelium proliferate in rich growth media, but initiate development upon nutrient depletion.
View Article and Find Full Text PDFBackground: Cellular functions can be regulated by cell-cell interactions that are influenced by extra-cellular, density-dependent signaling factors. Dictyostelium grow as individual cells in nutrient-rich sources, but, as nutrients become depleted, they initiate a multi-cell developmental program that is dependent upon a cell-density threshold. We hypothesized that novel secreted proteins may serve as density-sensing factors to promote multi-cell developmental fate decisions at a specific cell-density threshold, and use Dictyostelium in the identification of such a factor.
View Article and Find Full Text PDFBackground: Kinases mTORC1 and AMPK act as energy sensors, controlling nutrient responses and cellular growth. Changes in nutrient levels affect diverse transcriptional networks, making it challenging to identify downstream paths that regulate cellular growth or a switch to development via nutrient variation. The life cycle of Dictyostelium presents an excellent model to study the mTORC1 signaling function for growth and development.
View Article and Find Full Text PDFThyroxine deiodinases, the enzymes that regulate thyroxine metabolism, are essential for vertebrate growth and development. In the genome of Dictyostelium discoideum, a single intronless gene (dio3) encoding type III thyroxine 5' deiodinase is present. The amino acid sequence of D.
View Article and Find Full Text PDFBackground: The multicellular slug in Dictyostelium has a single tip that acts as an organising centre patterning the rest of the slug. High adenosine levels at the tip are believed to be responsible for this tip dominance and the adenosine antagonist, caffeine overrides this dominance promoting multiple tip formation.
Results: Caffeine induced multiple tip effect is conserved in all the Dictyostelids tested.
Background: Multicellularity in cellular slime molds is achieved by aggregation of several hundreds to thousands of cells. In the model slime mold Dictyostelium discoideum, adenosine is known to increase the aggregate size and its antagonist caffeine reduces the aggregate size. However, it is not clear if the actions of adenosine and caffeine are evolutionarily conserved among other slime molds known to use structurally unrelated chemoattractants.
View Article and Find Full Text PDF