Publications by authors named "Punam Mathur"

High throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats.

View Article and Find Full Text PDF

Psoriasis is a common inflammatory skin disease caused by genetic and environmental factors, including bacterial and viral infections. Since the skin is in constant contact with commensal and pathogenic microorganisms, we examined well-supported psoriasis genetic linkage intervals to identify genes encoding innate immune pattern recognition proteins that may play a role in pathogenesis. Two peptidoglycan recognition proteins, Pglyrp3 and Pglyrp4, are localized to the Psors4 locus on chromosome 1q21 in a gene cluster known as the epidermal differentiation complex (EDC).

View Article and Find Full Text PDF

Peptidoglycan recognition proteins (PGRPs or PGLYRPs) are pattern recognition molecules that are found in insects and mammals and are critical for innate immune responses. PGRPs bind peptidoglycan, a ubiquitous component of bacterial cell walls, and are involved in killing bacteria, degrading peptidoglycan, and initiating host defense reactions. Relatively little is known about the four mammalian PGRPs.

View Article and Find Full Text PDF