Publications by authors named "Pulugurtha B Kirti"

Heat stress substantially reduces tomato (Solanum lycopersicum) growth and yield globally, thereby jeopardizing food security. DnaJ proteins, constituents of the heat shock protein system, protect cells from diverse environmental stresses as HSP-70 molecular co-chaperones. In this study, we demonstrated that AdDjSKI, a serine-rich DnaJ III protein induced by pathogens, plays an important role in stabilizing photosystem II (PSII) in response to heat stress.

View Article and Find Full Text PDF

Peanut is a segmental allotetraploid in the section of the genus along with the Section Section has several diploid species along with and . The section comprises polyploid species. Several species in the genus are highly tolerant to biotic and abiotic stresses and provide excellent sets of genotypes for studies on differential gene expression.

View Article and Find Full Text PDF

The target of rapamycin (TOR) protein phosphorylates its downstream effector p70kDa ribosomal protein S6 kinases (S6K1) for ribosome biogenesis and translation initiation in eukaryotes. However, the molecular mechanism of TOR-S6K1-ribosomal protein (RP) signaling is not well understood in plants. In the present study, we report the transcriptional upregulation of ribosomal protein large and small subunit ( and ) genes in the previously established overexpressing transgenic lines of rice (in ssp.

View Article and Find Full Text PDF

Manipulation of autophagic pathway represents a tremendous opportunity for designing climate-smart crops with improved yield and better adaptability to changing environment. For exploiting autophagy to its full potential, identification and comprehensive characterization of adapters/receptor complex and elucidation of its regulatory network in crop plants is highly warranted.  Autophagy is a major intracellular trafficking pathway in eukaryotes involved in vacuolar degradation of cytoplasmic constituents, mis-folded proteins, and defective organelles.

View Article and Find Full Text PDF

Splicing of pre-mRNA is an essential part of eukaryotic gene expression. Serine-/arginine-rich (SR) proteins are highly conserved RNA-binding proteins present in all metazoans and plants. SR proteins are involved in constitutive and alternative splicing, thereby regulating the transcriptome and proteome diversity in the organism.

View Article and Find Full Text PDF

Sheath Blight (SB) disease in rice is caused by the infection from the fungal pathogen Rhizoctonia solani (R. solani). SB is one of the most severe rice diseases that can cause up to 50% yield losses in rice.

View Article and Find Full Text PDF

Our group has previously identified the activation of a GRAS transcription factor (TF) gene in the gain-of-function mutant population developed through activation tagging in rice (in an rice variety, BPT 5204) that was screened for water use efficiency. This family of GRAS transcription factors has been well known for their diverse roles in gibberellin signaling, light responses, root development, gametogenesis etc. Recent studies indicated their role in biotic and abiotic responses as well.

View Article and Find Full Text PDF

Our previous study demonstrated that the expression of GhNAC4, a NAC transcription factor from cotton, was induced by abiotic stresses and abscisic acid (ABA). In the present study, we investigated the molecular mechanisms underlying ABA and stress response of GhNAC4. Overexpression of GhNAC4 in transgenic tobacco conferred tolerance to salinity and drought treatments with associated enhanced expression of several stress-responsive marker genes.

View Article and Find Full Text PDF

Manifestation of male sterility in plants is an important requirement for hybrid seed production. Tapetum cell layer of anther is a primary target for genetic manipulation for male sterility. In our previous report, the targeted expression of cysteine protease in tapetum led to premature degeneration of tapetal layer that resulted in complete male sterility in transgenic tobacco plants.

View Article and Find Full Text PDF

Powdery mildew (PM, caused by Golovinomyces orontii) is one of the major diseases on sunflower that causes severe yield losses in the tropics. Sources of resistance to PM are reported in an exotic accession and some wild Helianthus species. The present study aims at quantitative proteomic analysis of susceptible, resistant, and immune genotypes of sunflower in response to PM infection at 3, 7, 10 days post infection.

View Article and Find Full Text PDF

Usable pollination control systems have proven to be effective system for the development of hybrid crop varieties, which are important for optimal performance over varied environments and years. They also act as a biocontainment to check horizontal transgene flow. In the last two decades, many genetic manipulations involving genes controlling the production of cytotoxic products, conditional male sterility, altering metabolic processes, post-transcriptional gene silencing, RNA editing and chloroplast engineering methods have been used to develop a proper pollination control system.

View Article and Find Full Text PDF

This study aimed to validate the physiological importance of Arabidopsis thaliana alternative oxidase 1a (AtAOX1a) in alleviating oxidative stress using Saccharomyces cerevisiae as a model organism. The AOX1a transformant (pYES2AtAOX1a) showed cyanide resistant and salicylhydroxamic acid (SHAM)-sensitive respiration, indicating functional expression of AtAOX1a in S. cerevisiae.

View Article and Find Full Text PDF

Abiotic stress results in massive loss of crop productivity throughout the world. Because of our limited knowledge of the plant defense mechanisms, it is very difficult to exploit the plant genetic resources for manipulation of traits that could benefit multiple stress tolerance in plants. To achieve this, we need a deeper understanding of the plant gene regulatory mechanisms involved in stress responses.

View Article and Find Full Text PDF

A novel zinc-binding alcohol dehydrogenase 2 (AdZADH2) was significantly upregulated in a wild peanut, Arachis diogoi treated with conidia of late leaf spot (LLS) pathogen, Phaeoisariopsis personata. This upregulation was not observed in a comparative analysis of cultivated peanut, which is highly susceptible to LLS. This zinc-binding alcohol dehydrogenase possessed a Rossmann fold containing NADB domain in addition to the MDR domain present in all previously characterized plant ADH genes/proteins.

View Article and Find Full Text PDF

Late embryogenesis abundant (LEA) proteins are a group of hydrophilic proteins, which accumulate in plants under varied stress conditions like drought, salinity, extreme temperatures and oxidative stress suggesting their role in the protection of plants against these stresses. A transcript derived fragment (TDF) corresponding to LEA gene, which got differentially expressed in wild peanut, Arachis diogoi against the late leaf spot pathogen, Phaeoisariopsis personata was used in this study. We have cloned its full length cDNA by RACE-PCR, which was designated as AdLEA.

View Article and Find Full Text PDF

Late leaf spot is a serious disease of peanut caused by the imperfect fungus, Phaeoisariopsis personata. Wild diploid species, Arachis diogoi. is reported to be highly resistant to this disease and asymptomatic.

View Article and Find Full Text PDF

We have identified a transcript derived fragment (TDF) corresponding to SGT1 in a study of differential gene expression on the resistant wild peanut, Arachis diogoi, upon challenge from the late leaf spot pathogen, Phaeoisariopsis personata, and cloned its full-length cDNA followed by subsequent validation through q-PCR. Sodium nitroprusside, salicylic acid, ethephon and methyl jasmonate induced the expression of AdSGT1, while the treatment with abscisic acid did not elicit its up-regulation. AdSGT1 is localized to both nucleus and cytoplasm.

View Article and Find Full Text PDF
Article Synopsis
  • Usable male sterility systems can help create hybrid crops and prevent unwanted gene flow.
  • The Barnase-Barstar system was the first to engineer male sterility using bacterial genes, while a new method uses a plant gene for pollen abortion in transgenic tobacco.
  • A cysteine protease gene from wild peanut was expressed in tobacco, leading to significant male sterility confirmed by various analyses.
View Article and Find Full Text PDF

Plant annexins function as calcium-dependent or -independent phospholipid binding proteins and constitute about 0.1% of total cellular proteins. Some of them were reported to antagonize oxidative stress and protect plant cells.

View Article and Find Full Text PDF

Brassica juncea annexin-3 (BjAnn3) was functionally characterized for its ability to modulate H2O2-mediated oxidative stress in Saccharomyces cerevisiae. BjAnn3 showed a significant protective role in cellular-defense against oxidative stress and partially alleviated inhibition of mitochondrial respiration in presence of exogenously applied H2O2. Heterologous expression of BjAnn3 protected membranes from oxidative stress-mediated damage and positively regulated antioxidant gene expression for ROS detoxification.

View Article and Find Full Text PDF

Brassica juncea Nonexpressor of pathogenesis-related genes 1 (BjNPR1) has been introduced into commercial indica rice varieties by Agrobacterium-mediated genetic transformation. Transgenic rice plants were regenerated from the phosphinothricin-resistant calli obtained after co-cultivation with Agrobacterium strain LBA4404 harbouring Ti plasmid pSB111-bar-BjNPR1. Molecular analyses confirmed the stable integration and expression of BjNPR1 in various transgenic rice lines.

View Article and Find Full Text PDF

Most annexins are calcium-dependent, phospholipid-binding proteins with suggested functions in response to environmental stresses and signaling during plant growth and development. They have previously been identified and characterized in Arabidopsis and rice, and constitute a multigene family in plants. In this study, we performed a comparative analysis of annexin gene families in the sequenced genomes of Viridiplantae ranging from unicellular green algae to multicellular plants, and identified 149 genes.

View Article and Find Full Text PDF

Based on high economic importance and nutritious value of tomato fruits and as previous studies employed E8 promoter in fruit ripening-specific gene expression, we have developed transgenic tomato plants overexpressing tomato anionic peroxidase cDNA (tap1) under E8 promoter. Stable transgene integration was confirmed by polymerase chain reaction (PCR) and Southern analysis for nptII. Northern blotting confirmed elevated tap1 levels in the breaker- and red-ripe stages of T(1) transgenic fruits, whereas wild-type (WT) plants did not show tap1 expression in these developmental stages.

View Article and Find Full Text PDF

The wild relatives of peanut are resistant to various economically important diseases including late leaf spot (LLS) caused by Phaeoisariopsis personata, compared with the susceptible cultivated peanut (Arachis hypogaea L.). The interaction of the late leaf spot pathogen, Phaeoisariopsis personata and the highly resistant, diploid peanut wild species, Arachis diogoi was analyzed at the molecular level by differential gene expression studies.

View Article and Find Full Text PDF