Publications by authors named "Pullanchiyodan Abhilash"

This paper presents the custom-made graphite-based piezoresistive strain sensor with gecko foot-inspired macroscopic features realized using a Velcro tape on Ecoflex substrate. The Velcro-based design provides an inexpensive and easy approach for the development of soft sensors with appreciable improvement in the performance even at low strain values. The sensor demonstrated excellent response (sensitivity of ∼16 500%, gauge factor of ∼3800) for 24% linear strain.

View Article and Find Full Text PDF

The increasing number of devices needed by wearable systems to bring radical advances in healthcare, robotics, and human-machine interfaces is a threat to their growth if the integration and energy-related challenges are not managed. A natural solution is to reduce the number of devices while retaining the functionality or simply using multifunctional devices, as demonstrated here through a stretchable supercapacitor (SSC) with intrinsic strain sensing. The presented SSC was obtained by electrodeposition of nanoflower MnO on fabric (as a pseudocapacitive electrode) and three-dimensional conductive wrapping of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) to boost the performance.

View Article and Find Full Text PDF

A sweat-based flexible supercapacitor (SC) for self-powered smart textiles and wearable systems is presented. The developed SC uses sweat as the electrolyte and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the active electrode. With PEDOT:PSS coated onto cellulose/polyester cloth, the SC shows specific capacitance of 8.

View Article and Find Full Text PDF

A facile formulation of fast-drying fluorescent ink made from nanostructured fluorescent silica nanocrystals is presented. The rheostable viscous ink suitable for screen printing was developed by careful selection of organic vehicle components, which was later printed onto various rigid and flexible substrates. Photoluminescence studies of the printed film confirmed that the formulated ink composition did not show noticeable influence on the excitation property of the fluorescent silica.

View Article and Find Full Text PDF

High-thermal-conductivity and low-dielectric-loss polymer nanocomposites have gained tremendous attention in microelectronics technology. Against this background, the present study deals with the development of a high-thermal-conductivity, low-dielectric-constant, and low-loss polymer nanocomposite based on silver nanoparticle (AgNP)-decorated boron nitride nanosheets (BNNSs) as the filler in poly(methyl methacrylate) (PMMA) matrix. The nanocomposites were prepared through a facile solution-blending process.

View Article and Find Full Text PDF