An imbalance in estrogen signaling is a critical event in breast tumorigenesis. The majority of breast cancers (BCs) are hormone-sensitive; they majorly express the estrogen receptor (ER+) and are activated by 17β-estradiol (E2). The steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in steroid biosynthesis.
View Article and Find Full Text PDFMicroRNAs are small non-coding RNAs evolutionary conserved molecules. They regulate cellular processes, including RNA silencing, post-translational gene expression and neurodegeneration. MicroRNAs are involved with human diseases such as cancer, Alzheimer's disease (AD) and others.
View Article and Find Full Text PDFAlzheimer's disease (AD) and Alzheimer's disease-related disorders (ADRD) are progressive neurodegenerative diseases without cure. Alzheimer's disease occurs in 2 forms, early-onset familial AD and late-onset sporadic AD. Early-onset AD is a rare (~1%), autosomal dominant, caused by mutations in presenilin-1, presenilin-2, and amyloid precursor protein genes and the other is a late-onset, prevalent and is evolved due to age-associated complex interactions between environmental and genetic factors, in addition to apolipoprotein E4 polymorphism.
View Article and Find Full Text PDFBreast cancer (BC) is a heterogeneous condition and comprises molecularly distinct subtypes. An imbalance in the levels of epigenetic histone deacetylases (HDACs), modulating estrogen accumulation, especially 17β-estradiol (E2), promotes breast tumorigenesis. In the present study, analyses of The Cancer Genome Atlas (TCGA) pan-cancer normalized RNA-Seq datasets revealed the dysregulation of 16 epigenetic enzymes (among a total of 18 members) in luminal BC subtypes, in comparison to their non-cancerous counterparts.
View Article and Find Full Text PDFThe steroidogenic acute regulatory (StAR) protein principally mediates steroid hormone biosynthesis by governing the transport of intramitochondrial cholesterol. Neurosteroids progressively decrease during aging, the key risk factor for Alzheimer's disease (AD), which is triggered by brain-region specific accumulation of amyloid beta (Aβ) precursor protein (APP), a key pathological factor. We demonstrate that hippocampal neuronal cells overexpressing wild-type (WtAPP) and mutant APP (mAPP) plasmids, conditions mimetic to AD, resulted in decreases in StAR mRNA, free cholesterol, and pregnenolone levels.
View Article and Find Full Text PDFInt J Mol Sci
January 2023
Breast cancer (BC) is primarily triggered by estrogens, especially 17β-estradiol (E2), which are synthesized by the aromatase enzyme. While all steroid hormones are derived from cholesterol, the rate-limiting step in steroid biosynthesis is mediated by the steroidogenic acute regulatory (StAR) protein. Herein, we demonstrate that mRNA expression was aberrantly high in human hormone-dependent BC (MCF7, MDA-MB-361, and T-47D), modest in hormone-independent triple negative BC (TNBC; MDA-MB-468, BT-549, and MDA-MB-231), and had little to none in non-cancerous mammary epithelial (HMEC, MCF10A, and MCF12F) cells.
View Article and Find Full Text PDFCoronavirus disease-19 (COVID-19), caused by a β-coronavirus and its genomic variants, is associated with substantial morbidities and mortalities globally. The COVID-19 virus and its genomic variants enter host cells upon binding to the angiotensin converting enzyme 2 receptors that are expressed in a variety of tissues, but predominantly in the lungs, heart, and blood vessels. Patients afflicted with COVID-19 may be asymptomatic or present with critical symptoms possibly due to diverse lifestyles, immune responses, aging, and underlying medical conditions.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
February 2023
Retinoids (vitamin A and its derivatives) play pivotal roles in diverse processes, ranging from homeostasis to neurodegeneration, which are also influenced by steroid hormones. The rate-limiting step in steroid biosynthesis is mediated by the steroidogenic acute regulatory (StAR) protein. In the present study, we demonstrate that retinoids enhanced StAR expression and pregnenolone biosynthesis, and these parameters were markedly augmented by activation of the PKA pathway in mouse hippocampal neuronal HT22 cells.
View Article and Find Full Text PDFEstrogen promotes the development and survival of the majority of breast cancers (BCs). Aromatase is the rate-limiting enzyme in estrogen biosynthesis, and it is immensely expressed in both cancerous and non-cancerous breast tissues. Endocrine therapy based on estrogen blockade, by aromatase inhibitors, has been the mainstay of BC treatment in post-menopausal women; however, resistance to hormone therapy is the leading cause of cancer death.
View Article and Find Full Text PDFImmunomodulation is influenced by the consumption of nutrients, and healthy immunity is pivotal to defending an individual from a variety of pathogens. The immune system is a network of intricately regulated biological processes that is comprised of many organs, cellular structures, and signaling molecules. A balanced diet, rich in vitamins, minerals, and antioxidants, is key to a strengthened immune system and, thus, crucial to proper functioning of various physiological activities.
View Article and Find Full Text PDFGlucocorticoid synthesis is a complex, multistep process that starts with cholesterol being delivered to the inner membrane of mitochondria by StAR and StAR-related proteins. Here its side chain is cleaved by CYP11A1 producing pregnenolone. Pregnenolone is converted to cortisol by the enzymes 3-βHSD, CYP17A1, CYP21A2, and CYP11B1.
View Article and Find Full Text PDFDysregulation of steroid biosynthesis has been implicated in the pathophysiology of a variety of cancers. One such common malignancy in women is breast cancer that is frequently promoted by estrogen overproduction. All steroid hormones are made from cholesterol, and the rate-limiting step in steroid biosynthesis is primarily mediated by the steroidogenic acute regulatory (StAR) protein.
View Article and Find Full Text PDFAromatase, a cytochrome P450 member, is a key enzyme involved in estrogen biosynthesis and is dysregulated in the majority of breast cancers. Studies have shown that lysine deacetylase inhibitors (KDI) decrease aromatase expression in cancer cells, yet many unknowns remain regarding the mechanism by which this occurs. However, advances have been made to clarify factors involved in the transcriptional regulation of the aromatase gene ().
View Article and Find Full Text PDFElimination of excess cholesteryl esters from macrophage-derived foam cells is known to be a key process in limiting plaque stability and progression of atherosclerotic lesions. We have recently demonstrated that regulation of retinoid mediated cholesterol efflux is influenced by liver X receptor (LXR) signaling in mouse macrophages (Manna, P.R.
View Article and Find Full Text PDFRetinoids (vitamin A and its derivatives) are critical for a spectrum of developmental and physiological processes, in which steroid hormones also play indispensable roles. The StAR protein predominantly regulates steroid biosynthesis in steroidogenic tissues. We have reported that regulation of retinoid, especially atRA and 9-cis RA, responsive StAR transcription is largely mediated by an LXR-RXR/RAR heterodimeric motif in the mouse StAR promoter.
View Article and Find Full Text PDFSteroid hormones are an important class of regulatory molecules that are synthesized in steroidogenic cells of the adrenal, ovary, testis, placenta, brain, and skin, and influence a spectrum of developmental and physiological processes. The steroidogenic acute regulatory protein (STAR) predominantly mediates the rate-limiting step in steroid biosynthesis, i.e.
View Article and Find Full Text PDFRemoval of cholesterol from macrophage-derived foam cells is a critical step to the prevention of atherosclerotic lesions. We have recently demonstrated the functional importance of retinoids in the regulation of the steroidogenic acute regulatory (StAR) protein that predominantly mediates the intramitochondrial transport of cholesterol in target tissues. In the present study, treatment of mouse macrophages with retinoids, particularly all-trans retinoic acid (atRA) and 9-cis RA, resulted in increases in cholesterol efflux to apolipoprotein AI (Apo-A1).
View Article and Find Full Text PDFThe mammalian skin is a heterogeneous organ/tissue covering our body, showing regional variations and endowed with neuroendocrine activities. The latter is represented by its ability to produce and respond to neurotransmitters, neuropeptides, hormones and neurohormones, of which expression and phenotypic activities can be modified by ultraviolet radiation, chemical and physical factors, as well as by cytokines. The neuroendocrine contribution to the responses of skin to stress is served, in part, by local synthesis of all elements of the hypothalamo-pituitary-adrenal axis.
View Article and Find Full Text PDFTranslocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is a mitochondrial outer membrane protein implicated as essential for cholesterol import to the inner mitochondrial membrane, the rate-limiting step in steroid hormone biosynthesis. Previous research on TSPO was based entirely on in vitro experiments, and its critical role was reinforced by an early report that claimed TSPO knock-out mice were embryonic lethal. In a previous publication, we examined Leydig cell-specific TSPO conditional knock-out mice that suggested TSPO was not required for testosterone production in vivo.
View Article and Find Full Text PDFHuman skin has the ability to synthesize glucocorticoids de novo from cholesterol or from steroid intermediates of systemic origin. By interacting with glucocorticoid receptors, they regulate skin immune functions as well as functions and phenotype of the epidermal, dermal and adnexal compartments. Most of the biochemical (enzyme and transporter activities) and regulatory (neuropeptides mediated activation of cAMP and protein kinase A dependent pathways) principles of steroidogenesis in the skin are similar to those operating in classical steroidogenic organs.
View Article and Find Full Text PDFMutations in receptors, ion channels, and enzymes are frequently recognized by the cellular quality control system as misfolded and retained in the endoplasmic reticulum (ER) or otherwise misrouted. Retention results in loss of function at the normal site of biological activity and disease. Pharmacoperones are target-specific small molecules that diffuse into cells and serve as folding templates that enable mutant proteins to pass the criteria of the quality control system and route to their physiologic site of action.
View Article and Find Full Text PDFBoth retinoic acid receptors (RARs) and retinoid X receptors (RXRs) mediate the action of retinoids that play important roles in reproductive development and function, as well as steroidogenesis. Regulation of steroid biosynthesis is principally mediated by the steroidogenic acute regulatory protein (StAR); however, the modes of action of retinoids in the regulation of steroidogenesis remain obscure. In this study we demonstrate that all-trans retinoic acid (atRA) enhances StAR expression, but not its phosphorylation (P-StAR), and progesterone production in MA-10 mouse Leydig cells.
View Article and Find Full Text PDF