With the benefit of offering hydrolysis breakdown and bio-resorption of its products, polylactic acid (PLA) is among the most frequently utilized polymers for many biomedical applications. Composites made of polylactic acid (PLA) and bioactive substances such as bioactive glass (BG) are developing as novel biomaterials because they comprise the mechanical properties and bioactivity of bioactive glass (BG) with the conformability and bio absorption of PLA. In this work, composites of PLA/BG were produced by employing the solvent-based three-dimensional printing process.
View Article and Find Full Text PDFTracheal implantation remains a major therapeutic challenge due to the unavailability of donors and the lack of biomimetic tubular grafts. Fabrication of biomimetic tracheal scaffolds of suitable materials with matched rigidity, enhanced flexibility and biocompatibility has been a major challenge in the field of tracheal reconstruction. In this study, customized tubular grafts made up of FDA-approved polycaprolactone ( ) and polyurethane ( ) were fabricated using a novel solvent-based extrusion 3D printing.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
June 2022
The fabrication of ordered pore topological structures (OPTS) with an improved biodegradation profile offers unique attributes required for bone reconstruction. These attributes consisted of fully interconnected porous structure, bone-mimicking mechanical properties, and the possibility of fully regenerating bony defects. Most of the biomaterials based on magnesium were associated with the problem of too fast degradation rate.
View Article and Find Full Text PDFUndue heat production in surgical bone drilling leads to osteonecrosis and can be an important cause of failure of osteosynthesis, impaired healing, and loosening of implants following orthopedic surgery. The present work aims to minimize heat production below the critical temperature for thermal osteonecrosis (i.e.
View Article and Find Full Text PDFTissue-engineered tubular scaffolds offer huge potential to heal or replace the diseased organ parts like blood vessels, trachea, oesophagus and ureter. However, manufacturing these scaffolds in various scales and shapes is always challenging and requires progressive technology. Developing a flexible and accurate manufacturing method is a major developmental direction in the field of tubular scaffold fabrication.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
September 2021
In the present research, the effectiveness of developed methodology based on solvent cast 3D printing technique was investigated by printing the different geometries of the stents. The carbonyl iron powder (CIP) reinforced polycaprolactone (CIPC) was used to print three pre-existing stent designs such as ABBOTT BVS1.1, PALMAZ-SCHATZ, and ART18Z.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
March 2021
Zinc (Zn) based biomaterials have been emerged as one of the capable biodegradable materials for biomedical applications because of the ideal degradation properties. In the present work, corrosion kinetics of Zn-hydroxyapatite (HA), and Zn-HA-iron (Fe) materials developed using microwave sintering process were investigated. The effect of the inclusion of HA and Fe in Zn on corrosion properties have been evaluated in the simulated body fluid solution.
View Article and Find Full Text PDFThe strength between the cortical screw and bone following an orthopaedic implant surgery is an important determinant for the success of osteosynthesis. An excessive axial cutting force during drilling produces microcracks in the bone surface, resulting in reduced strength between the screw and bone, resulting in loosening of implant. The present work, investigates the influence of drilling parameters on microcracks generated in the drilled surface and pull-out strength of screw fixed in cortical bone of human tibia.
View Article and Find Full Text PDFBiological and mechanical properties of biodegradable polymeric composite materials are strongly influenced by the choice of appropriate reinforcement in the polymer matrix. Non-compatibility of material in the vascular system could obstruct the way of the biological fluids. The concept of development of polymeric composite material for vascular implants is to provide enough support to the vessel and to restore the vessel in the natural state after degradation.
View Article and Find Full Text PDFEfficacy and outcomes of osteosynthesis depend on various factors including types of injury and repair, host factors, characteristics of implant materials and type of implantation. One of the most important host factors appears to be the extent of bone damage due to the mechanical force and thermal injury which are produced at cutting site during bone drilling. The temperature above the critical temperature (47 °C) produces thermal osteonecrosis in the bones.
View Article and Find Full Text PDFTemperature rise in surgical bone drilling is an important factor that leads to death of the bone cells, known as Osteonecrosis, and results into poor osteosynthesis i.e. implant failure.
View Article and Find Full Text PDFCutting force and torque are important factors in the success of the bone drilling process. In the recent past, many attempts have been made to reduce the cutting force and torque in the bone drilling process. In this work, drilling on human cadaver bones has been performed using rotary ultrasonic bone drilling process to investigate the effect of drilling parameters on cutting force and torque.
View Article and Find Full Text PDFThis work discusses the biomechanical testing of 3 elbow bones, namely the humerus, ulna, and radius. There is a need to identify the mechanical properties of the bones at the organ level. The following tests were performed: 3-point bending, fracture toughness, and axial compression.
View Article and Find Full Text PDFUltrasonic assisted milling (UAM) is one of the advancements in the area of conventional milling process. Literature suggests that superpositioning of ultrasonic vibration with milling process improves its efficacy by reducing forces and improving surface finish. In the present study experimental investigations were carried out to evaluate the effect of process parameters (power of ultrasonic vibration (UP), rotational speed, axial depth of cut (DOC) and feed rate) on the cutting responses (average cutting force and the standard deviation in cutting forces).
View Article and Find Full Text PDF