Aims: Recent studies highlight the potentially important role of neoepitopes in breaking immune tolerance in type 1 diabetes. T cell reactivity to these neoepitopes has been reported, but how this response compares quantitatively and phenotypically with previous reports on native epitopes is not known. Thus, an understanding of the relationship between native and neoepitopes and their role as tolerance breakers or disease drivers in type 1 diabetes is required.
View Article and Find Full Text PDFType 1 diabetes is an autoimmune disease caused by the destruction of the insulin-producing β-cells. To revert type 1 diabetes, the suppression of the autoimmune attack should be combined with a β-cell replacement strategy. It has been previously demonstrated that liraglutide, a glucagon-like peptide-1 receptor agonist, restores β-cell mass in type 1 diabetes, via α-cell transdifferentiation and neogenesis.
View Article and Find Full Text PDFPurpose Of Review: The role of T cells specific for islet autoantigens is proven in pathogenesis of type 1 diabetes. Recently, there has been rapid expansion in the number of T-cell subsets identified, this has coincided with an increase in the repertoire of reported islet antigens mainly through the discovery of novel epitopes. A discussion of how these marry together is now warranted and timely.
View Article and Find Full Text PDFType 1 diabetes is an autoimmune disease caused by the destruction of the insulin-producing β-cells. An ideal immunotherapy should combine the blockade of the autoimmune response with the recovery of functional target cell mass. With the aim to develop new therapies for type 1 diabetes that could contribute to β-cell mass restoration, a drug repositioning analysis based on systems biology was performed to identify the β-cell regenerative potential of commercially available compounds.
View Article and Find Full Text PDFAims/hypothesis: Antigen-specific therapy aims to modify inflammatory T cell responses in type 1 diabetes and restore immune tolerance. One strategy employs GAD65 conjugated to aluminium hydroxide (GAD-alum) to take advantage of the T helper (Th)2-biasing adjuvant properties of alum and thereby regulate pathological Th1 autoimmunity. We explored the cellular and molecular mechanism of GAD-alum action in the setting of a previously reported randomised placebo-controlled clinical trial conducted by Type 1 Diabetes TrialNet.
View Article and Find Full Text PDFIn type 1 diabetes (T1D), autoreactive cytotoxic CD8 T cells are implicated in the destruction of insulin-producing β cells. The HLA-B*3906 and HLA-A*2402 class I genes confer increased risk and promote early disease onset, suggesting that CD8 T cells that recognize peptides presented by these class I molecules on pancreatic β cells play a pivotal role in the autoimmune response. We examined the frequency and phenotype of circulating preproinsulin (PPI)-specific and insulin B (InsB)-specific CD8 T cells in HLA-B*3906 children newly diagnosed with T1D and in high-risk HLA-A*2402 children before the appearance of disease-specific autoantibodies and before diagnosis of T1D.
View Article and Find Full Text PDFNon-genetic factors are crucial in the pathogenesis of type 1 diabetes (T1D), a disease caused by autoimmunity against insulin-producing β-cells. Exposure to medications in the prenatal period may influence the immune system maturation, thus altering self-tolerance. Prenatal administration of betamethasone -a synthetic glucocorticoid given to women at risk of preterm delivery- may affect the development of T1D.
View Article and Find Full Text PDFType 1 diabetes (T1D) is a metabolic disease caused by the autoimmune destruction of insulin-producing β-cells. With its incidence increasing worldwide, to find a safe approach to permanently cease autoimmunity and allow β-cell recovery has become vital. Relying on the inherent ability of apoptotic cells to induce immunological tolerance, we demonstrated that liposomes mimicking apoptotic β-cells arrested autoimmunity to β-cells and prevented experimental T1D through tolerogenic dendritic cell (DC) generation.
View Article and Find Full Text PDFThe pathophysiology of inflammatory bowel disease (IBD) reflects a balance between mucosal injury and reparative mechanisms. Some regenerating gene () family members have been reported to be expressed in Crohn's disease (CD) and ulcerative colitis (UC) and to be involved as proliferative mucosal factors in IBD. However, expression of all family genes in IBD is still unclear.
View Article and Find Full Text PDFAim: Based on the ability of apoptosis to induce immunological tolerance, liposomes were generated mimicking apoptotic cells, and they arrest autoimmunity in Type 1 diabetes. Our aim was to validate the immunotherapy in other autoimmune disease: multiple sclerosis.
Materials & Methods: Phosphatidylserine-rich liposomes were loaded with disease-specific autoantigen.
Cell-based tolerogenic therapy is a promising approach for the treatment of autoimmune diseases and transplant rejection. Regulatory T cells and tolerogenic dendritic cells have been particularly explored in the treatment of various autoimmune disorders in experimental models of disease. Although some of these cells have already been tested in a limited number of clinical trials, there is still a need for preclinical research on tolerogenic cells in animal models of autoimmunity.
View Article and Find Full Text PDFUmbilical cord blood (UCB) transplantation is associated with long periods of aplastic anaemia. This undesirable situation is due to the low cell dose available per unit of UCB and the immaturity of its progenitors. To overcome this, we present a cell culture strategy aimed at the expansion of the CD34 population and the generation of granulocyte lineage-committed progenitors.
View Article and Find Full Text PDFThe transmembrane glycoprotein CD26 or dipeptidyl peptidase IV (DPPIV) is a multifunctional protein. In immune system, CD26 plays a role in T-cell function and is also involved in thymic maturation and emigration patterns. In preclinical studies, treatment with DPPIV inhibitors reduces insulitis and delays or even reverses the new -onset of type 1 diabetes (T1D) in non-obese diabetic (NOD) mice.
View Article and Find Full Text PDFAutoreactive B lymphocytes play a key role as APCs in diaebetogenesis. However, it remains unclear whether B-cell tolerance is compromised in NOD mice. Here, we describe a new B lymphocyte transgenic NOD mouse model, the 116C-NOD mouse, where the transgenes derive from an islet-infiltrating B lymphocyte of a (8.
View Article and Find Full Text PDFCD26 is a T cell activation marker consisting in a type II transmembrane glycoprotein with dipeptidyl peptidase IV (DPPIV) activity in its extracellular domain. It has been described that DPPIV inhibition delays the onset of type 1 diabetes and reverses the disease in non-obese diabetic (NOD) mice. The aim of the present study was to assess the effect of MK626, a DPPIV inhibitor, in type 1 diabetes incidence and in T lymphocyte subsets at central and peripheral compartments.
View Article and Find Full Text PDFIntroduction: The development of new therapies to induce self-tolerance has been an important medical health challenge in type 1 diabetes. An ideal immunotherapy should inhibit the autoimmune attack, avoid systemic side effects and allow β-cell regeneration. Based on the immunomodulatory effects of apoptosis, we hypothesized that apoptotic mimicry can help to restore tolerance lost in autoimmune diabetes.
View Article and Find Full Text PDFType 1 diabetes (T1D) is a metabolic disease that results from the autoimmune attack against insulin-producing β-cells in the pancreatic islets of Langerhans. Currently, there is no treatment to restore endogenous insulin secretion in patients with autoimmune diabetes. In the last years, the development of new therapies to induce long-term tolerance has been an important medical health challenge.
View Article and Find Full Text PDFIntroduction: Efferocytosis is a crucial process by which apoptotic cells are cleared by phagocytes, maintaining immune tolerance to self in the absence of inflammation. Peripheral tolerance, lost in autoimmune processes, may be restored by the administration of autologous dendritic cells loaded with islet apoptotic cells in experimental type 1 diabetes.
Objective: To evaluate tolerogenic properties in dendritic cells induced by the clearance of apoptotic islet cells, thus explaining the re-establishment of tolerance in a context of autoimmunity.
Type 1 diabetes is a metabolic disease caused by autoimmunity towards β -cells. Different strategies have been developed to restore β -cell function and to reestablish immune tolerance to prevent and cure the disease. Currently, there is no effective treatment strategy to restore endogenous insulin secretion in patients with type 1 diabetes.
View Article and Find Full Text PDF