Publications by authors named "Pujades C"

The different spatiotemporal distribution of progenitor and neurogenic capacities permits that brain regions engage asynchronously in neurogenesis. In the hindbrain, rhombomere progenitor cells contribute to neurons during the first neurogenic phase, whereas boundary cells participate later. To analyze what maintains boundary cells as non-neurogenic progenitors, we addressed the role of Her9, a zebrafish Hes1-related protein.

View Article and Find Full Text PDF

Tissue growth and morphogenesis are interrelated processes, whose tight coordination is essential for the production of different cell fates and the timely precise allocation of stem cell capacities. The zebrafish embryonic brainstem, the hindbrain, exemplifies such coupling between spatiotemporal cell diversity acquisition and tissue growth as the neurogenic commitment is differentially distributed over time. Here, we combined cell lineage and imaging approaches to reveal the emergence of specific cell population properties within the rhombomeres.

View Article and Find Full Text PDF

During development, regulatory factors appear in a precise order to determine cell fates over time. Consequently, to investigate complex tissue development, it is necessary to visualize and manipulate cell lineages with temporal control. Current strategies for tracing vertebrate cell lineages lack genetic access to sequentially produced cells.

View Article and Find Full Text PDF

Reconstruction of prototypic three-dimensional (3D) atlases at the scale of whole tissues or organs requires specific methods to be developed. We have established a digital 3D-atlas maker (DAMAKER) and built a digital 3D-atlas to monitor the changes in the growth of the neuronal differentiation domain in the zebrafish hindbrain upon time. DAMAKER integrates spatial and temporal data of cell populations, neuronal differentiation and brain morphogenesis, through imaging techniques paired with image analyses and segmentation tools.

View Article and Find Full Text PDF

Elucidating the cellular and molecular mechanisms that regulate the balance between progenitor cell proliferation and neuronal differentiation in the construction of the embryonic brain demands the combination of cell lineage and functional approaches. Here, we generate the comprehensive lineage of hindbrain boundary cells by using a CRISPR-based knockin zebrafish transgenic line that specifically labels the boundaries. We unveil that boundary cells asynchronously engage in neurogenesis undergoing a functional transition from neuroepithelial progenitors to radial glia cells, coinciding with the onset of Notch3 signaling that triggers their asymmetrical cell division.

View Article and Find Full Text PDF

The central nervous system (CNS) exhibits an extraordinary diversity of neurons, with the right cell types and proportions at the appropriate sites. Thus, to produce brains with specific size and cell composition, the rates of proliferation and differentiation must be tightly coordinated and balanced during development. Early on, proliferation dominates; later on, the growth rate almost ceases as more cells differentiate and exit the cell cycle.

View Article and Find Full Text PDF

Mechanical forces are exerted throughout cytokinesis, the final step of cell division. Yet, how forces are transduced and affect the signaling dynamics of cytokinetic proteins remains poorly characterized. We now show that the mechanosensitive Piezo1 channel is activated at the intercellular bridge (ICB) connecting daughter cells to regulate abscission.

View Article and Find Full Text PDF

Cells in growing tissues receive both biochemical and physical cues from their microenvironment. Growing evidence has shown that mechanical signals are fundamental regulators of cell behavior. However, how physical properties of the microenvironment are transduced into critical cell behaviors, such as proliferation, progenitor maintenance, or differentiation during development, is still poorly understood.

View Article and Find Full Text PDF

Embryonic boundaries were first described in Drosophila, and then in vertebrate embryos, as cellular interfaces between compartments. They display signaling properties and in vertebrates might allocate cells fated to different anatomical structures, or cells that will play different functions over time. One of the vertebrate embryonic structures with boundaries is the hindbrain, the posterior brain vesicle, which is transitory segmented upon morphogenesis.

View Article and Find Full Text PDF

The Lower Rhombic Lip (LRL) is a transient neuroepithelial structure of the dorsal hindbrain, which expands from r2 to r7, and gives rise to deep nuclei of the brainstem, such as the vestibular and auditory nuclei and most posteriorly the precerebellar nuclei. Although there is information about the contribution of specific proneural-progenitor populations to specific deep nuclei, and the distinct rhombomeric contribution, little is known about how progenitor cells from the LRL behave during neurogenesis and how their transition into differentiation is regulated. In this work, we investigated the atoh1 gene regulatory network operating in the specification of LRL cells, and the kinetics of cell proliferation and behavior of atoh1a-derivatives by using complementary strategies in the zebrafish embryo.

View Article and Find Full Text PDF

Cells perceive their microenvironment through chemical and physical cues. However, how the mechanical signals are interpreted during embryonic tissue deformation to result in specific cell behaviors is largely unknown. The Yap/Taz family of transcriptional co-activators has emerged as an important regulator of tissue growth and regeneration, responding to physical cues from the extracellular matrix, and to cell shape and actomyosin cytoskeletal changes.

View Article and Find Full Text PDF

Sphingolipid imbalance is the culprit in a variety of neurological diseases, some affecting the myelin sheath. We have used whole-exome sequencing in patients with undetermined leukoencephalopathies to uncover the endoplasmic reticulum lipid desaturase DEGS1 as the causative gene in 19 patients from 13 unrelated families. Shared features among the cases include severe motor arrest, early nystagmus, dystonia, spasticity, and profound failure to thrive.

View Article and Find Full Text PDF

Developmental programs often rely on parallel morphogenetic mechanisms that guarantee precise tissue architecture. While redundancy constitutes an obvious selective advantage, little is known on how novel morphogenetic mechanisms emerge during evolution. In zebrafish, rhombomeric boundaries behave as an elastic barrier, preventing cell intermingling between adjacent compartments.

View Article and Find Full Text PDF

Reconstructing the lineage of cells is central to understanding how the wide diversity of cell types develops. Here, we provide the neurosensory lineage reconstruction of a complex sensory organ, the inner ear, by imaging zebrafish embryos in vivo over an extended timespan, combining cell tracing and cell fate marker expression over time. We deliver the first dynamic map of early neuronal and sensory progenitor pools in the whole otic vesicle.

View Article and Find Full Text PDF
Article Synopsis
  • * The TGF-β protein family, specifically the coreceptor betaglycan (BG), is significant for embryonic development, but its specific role in angiogenesis has not been explored before.
  • * Research on zebrafish shows that BG is vital for proper blood vessel formation, as its absence leads to significant problems in vessel pathfinding and migration, highlighting potential differences in angiogenesis regulation across species.
View Article and Find Full Text PDF

Segregating cells into compartments during embryonic development is essential for growth and pattern formation. In the developing hindbrain, boundaries separate molecularly, physically and neuroanatomically distinct segments called rhombomeres. After rhombomeric cells have acquired their identity, interhombomeric boundaries restrict cell intermingling between adjacent rhombomeres and act as signaling centers to pattern the surrounding tissue.

View Article and Find Full Text PDF

Establishing topographical maps of the external world is an important but still poorly understood feature of the vertebrate sensory system. To study the selective innervation of hindbrain regions by sensory afferents in the zebrafish embryo, we mapped the fine-grained topographical representation of sensory projections at the central level by specific photoconversion of sensory neurons. Sensory ganglia located anteriorly project more medially than do ganglia located posteriorly, and this relates to the order of sensory ganglion differentiation.

View Article and Find Full Text PDF

Background: The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases.

View Article and Find Full Text PDF

Ethanol is the most common human teratogen, and its consumption during pregnancy can produce a wide range of abnormalities in infants known as fetal alcohol spectrum disorder (FASD). The major characteristics of FASD can be divided into: (i) growth retardation, (ii) craniofacial abnormalities, and (iii) central nervous system (CNS) dysfunction. FASD is the most common cause of nongenetic mental retardation in Western countries.

View Article and Find Full Text PDF

Segregating cells into compartments during embryonic development is essential for growth and pattern formation. Physical mechanisms shaping compartment boundaries were recently explored in Drosophila, where actomyosin-based barriers were revealed to be important for keeping cells apart. In vertebrates, interhombomeric boundaries are straight interfaces, which often serve as signaling centers that pattern the surrounding tissue.

View Article and Find Full Text PDF

The introduction of mechanism-based targeted therapies to treat human cancers is fruit of decades of research into the molecular basis of cancer pathogenesis. Despite the growing knowledge about the molecular mechanisms governing its causes and progression, there is a lack of effective treatments for many types of cancer. The expensive and time-consuming preclinical pipeline for testing molecules slows the discovery of new therapies.

View Article and Find Full Text PDF

In the inner ear, sensory versus neuronal specification is achieved through few well-defined bHLH transcription factors. However, the molecular mechanisms regulating the generation of the appropriate cell type in the correct place and at the correct time are not completely understood yet. Various studies have shown that hair cell- and neuron-specifying genes partially overlap in the otic territory, suggesting that mutual interactions among these bHLH factors could direct the generation of the two cell types from a common neurosensory progenitor.

View Article and Find Full Text PDF

Fgf and Wnt signalling have been shown to be required for formation of the otic placode in vertebrates. Whereas several Fgfs including Fgf3, Fgf8 and Fgf10 have been shown to participate during early placode induction, Wnt signalling is required for specification and maintenance of the otic placode, and dorsal patterning of the otic vesicle. However, the requirement for specific members of the Wnt gene family for otic placode and vesicle formation and their potential interaction with Fgf signalling has been poorly defined.

View Article and Find Full Text PDF

Microbial transcriptomics are providing new insights into the functional processes of microbial communities. However, analysis of each sample is still expensive and time consuming. A rapid and low cost method that would allow the identification of the most interesting samples for posterior in-depth metatranscriptomics analysis would be extremely useful.

View Article and Find Full Text PDF

Objective: To identify and select common diseases of possible occupational origin, managed through the Spanish National Health System.

Design: Cross-sectional study.

Setting: Catalonia (Spain).

View Article and Find Full Text PDF