Publications by authors named "Puja Kumari Agnivesh"

The surge in multidrug resistance in Staphylococcus aureus is the pressing need to identify novel alternatives to combat antimicrobial resistance effectively. Bakuchiol is a bioactive prenylated phenolic meroterpene largely abundant in the seeds of Psoralea corylifolia. In this study, we present the biological assessment of bakuchiol derived from P.

View Article and Find Full Text PDF

Tuberculosis continues to pose a health challenge causing the loss of millions of lives despite the existence of multiple drugs, for treatment. The emergence of drug-resistant strains has made the situation more complex making it increasingly difficult to fight against this disease. This review outlines the challenges associated with TB drug discovery, the nature of Mycobacterium tuberculosis shedding light on the mechanisms that lead to treatment failure and antibiotic resistance.

View Article and Find Full Text PDF

Tuberculosis, caused by Mycobacterium tuberculosis, is a fatal infectious disease that prevails to be the second leading cause of death from a single infectious agent despite the availability of multiple drugs for treatment. The current treatment regimen involves the combination of several drugs for 6 months that remain ineffective in completely eradicating the infection because of several drawbacks, such as the long duration of treatment and the side effects of drugs causing non-adherence of patients to the treatment regimen. Autophagy is an intracellular degradative process that eliminates pathogens at the early stages of infection.

View Article and Find Full Text PDF

The urgent development of newer alternatives has been deemed a panacea for tackling emerging antimicrobial resistance effectively. Herein, we report the design, synthesis, and biological evaluation of 1,3-diaryl substituted pyrazole-based urea and thiourea derivatives as antimicrobial agents. Preliminary screening results revealed that compound 7a (3,4-dichlorophenyl derivative) exhibited potent activity against (MIC = 0.

View Article and Find Full Text PDF

In TB, combat between the human host and Mycobacterium tuberculosis involves intricate interactions with immune cells. M. tuberculosis has evolved a complex evasion system to circumvent immune cells, leading to persistence and limiting its clearance by the host.

View Article and Find Full Text PDF

The persistence of makes it difficult to eradicate the associated infection from the host. The flexible nature of mycobacteria and their ability to adapt to adverse host conditions give rise to different drug-tolerant phenotypes. Granuloma formation restricts nutrient supply, limits oxygen availability and exposes bacteria to a low pH environment, resulting in non-replicating bacteria.

View Article and Find Full Text PDF

Mycobacterial infections, including multidrug and extreme drug-resistant (MDR and XDR) infections, are a severe challenge and create a virtual antibiotic-deficient era. Bacterial transcription is an established antimicrobial drug target. In mycobacteria, efficient transcription termination relies on the ATP-dependent RNA helicase factor Rho.

View Article and Find Full Text PDF