Customised perylenediimide (PDI) chromophores find diverse applications not only as chemosensors, inorganic-organic semiconductors, photovoltaics, photocatalysts, , but also in protein surface engineering, bio-sensors and drug delivery systems. This study focuses on the interaction of a custom synthesized phenylalanine derivatized perylenediimide (L-Phe-PDI) dye with a model protein, insulin, and its structurally distinct fibrils to develop fluorescence sensors for fibrillar aggregates and imaging applications. Detailed photophysical studies revealed that L-Phe-PDI gets aggregated in the presence of insulin and causes emission quenching at pH 7.
View Article and Find Full Text PDFImmunofluorescence techniques have been a great tool to chase the structure, localization, and function of many proteins within a cell. Drosophila eye is widely used as a model to answer various questions. However, the complex sample preparation and visualization methods restrict its use only with an expert's hand.
View Article and Find Full Text PDFRecently, injectable hydrogels have attracted much interest in tissue engineering (TE) applications because of their controlled flowability, adaptability, and easy handling properties. This work emphasizes the synthesis and characterizations of bioactive glass (BAG) nanoparticle-reinforced poly(ethylene glycol) (PEG)- and poly(-vinylcarbazole) (pNVC)-based minimally invasive composite injectable hydrogel suitable for bone regeneration. First, the copolymer was synthesized from a combination of PEG and pNVC through reversible addition-fragmentation chain-transfer (RAFT) polymerization and nanocomposite hydrogel constructs were subsequently prepared by conjugating BAG particles at varying loading concentrations.
View Article and Find Full Text PDFThe ability of polyanionic molybdate to inhibit and degrade protein fibrils both in vitro (insulin protein) and in vivo (Drosophila fly model) has been demonstrated. We establish the disappearance of fibrillar structures and recovery from neurodegenerative disorders in molybdate-treated Aβ42-mutant Drosophila flies as compared to the untreated ones, corroborating the therapeutic ability of ammonium molybdate towards the treatment of Alzheimer's disease.
View Article and Find Full Text PDFThis work demonstrates a facile pathway to develop a biopolymer based amphiphilic macromolecule through reversible addition-fragmentation chain transfer (RAFT) polymerization, using dextran (a biopolymer) as starting material. Also, a new hydrophobic monomer [2-methyl-acrylic acid 1-benzyl-1H-[1,2,3] triazol-4-ylmethyl ester (MABTE)] has been synthesized using methacrylic acid via "click" approach. The resultant copolymer displays controlled radical polymerization characteristics: narrow polydispersity (Ð) and controlled molecular weight as obtained through advanced polymer chromatography (APC) analysis.
View Article and Find Full Text PDFDextrin and poly (N-vinyl caprolactam) based amphiphilic graft copolymer has recently been developed using RAFT polymerization. The prepared graft copolymer has been characterized in details using FTIR and H NMR spectral analyses, GPC, TGA, FESEM, TEM and DLS analyses. GPC analysis results indicate that the polymerization is controlled, while the LCST value of the copolymer suggests that the synthesized copolymer demonstrates sol-gel behaviour on applying temperature.
View Article and Find Full Text PDF