Publications by authors named "Puisieux A"

Cellular plasticity enables cancer cells to adapt non-genetically, thereby preventing therapeutic success. The epithelial-mesenchymal transition (EMT) is a type of plasticity linked to resistance and metastasis. However, its exact impact on population diversity and its dynamics under chemotherapy is unknown.

View Article and Find Full Text PDF

The epithelial-mesenchymal transition (EMT) is a dynamic transdifferentiation of epithelial cells into mesenchymal cells. EMT programs exhibit great diversity, based primarily on the distinct impact of molecular activities of the EMT transcription factors. Using a panel of cancer cell lines and a series of 71 triple-negative primary breast tumors, we report that the EMT transcription factor ZEB1 modulates site-specific chemical modifications of ribosomal RNA (rRNA).

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) involves profound changes in cell morphology, driven by transcriptional and epigenetic reprogramming. However, evidence suggests that translation and ribosome composition also play key roles in establishing pathophysiological phenotypes. Using genome-wide analyses, we reported significant rearrangement of the translational landscape and machinery during EMT.

View Article and Find Full Text PDF

Background Information: The control of epithelial cell polarity is key to their function. Its dysregulation is a major cause of tissue transformation. In polarized epithelial cells,the centrosome is off-centred toward the apical pole.

View Article and Find Full Text PDF

This symposium is the 5th PSL (Paris Sciences & Lettres) Chemical Biology meeting (2015, 2016, 2019, 2023, 2024) held at Institut Curie. This initiative originally started at Institut de Chimie des Substances Naturelles (ICSN) in Gif-sur-Yvette, with a strong focus on chemistry. It was then continued at the Institut Curie (2015) covering a larger scope, before becoming the official PSL Chemical Biology meeting.

View Article and Find Full Text PDF

The diverse range of organizations contributing to the global research ecosystem is believed to enhance the overall quality and resilience of its output. Mid-sized autonomous research institutes, distinct from universities, play a crucial role in this landscape. They often lead the way in new research fields and experimental methods, including those in social and organizational domains, which are vital for driving innovation.

View Article and Find Full Text PDF

In breast cancers, aberrant activation of the RAS/MAPK pathway is strongly associated with mesenchymal features and stemness traits, suggesting an interplay between this mitogenic signaling pathway and epithelial-to-mesenchymal plasticity (EMP). By using inducible models of human mammary epithelial cells, we demonstrate herein that the oncogenic activation of RAS promotes ZEB1-dependent EMP, which is necessary for malignant transformation. Notably, EMP is triggered by the secretion of pro-inflammatory cytokines from neighboring RAS-activated senescent cells, with a prominent role for IL-6 and IL-1α.

View Article and Find Full Text PDF

Breast cancer is one of the most prominent types of cancers, in which therapeutic resistance is a major clinical concern. Specific subtypes, such as claudin-low and metaplastic breast carcinoma (MpBC), have been associated with high nongenetic plasticity, which can facilitate resistance. The similarities and differences between these orthogonal subtypes, identified by molecular and histopathological analyses, respectively, remain insufficiently characterized.

View Article and Find Full Text PDF

Unlabelled: Gynecologic carcinosarcomas (CS) are biphasic neoplasms composed of carcinomatous (C) and sarcomatous (S) malignant components. Because of their rarity and histologic complexity, genetic and functional studies on CS are scarce and the mechanisms of initiation and development remain largely unknown. Whole-genome analysis of the C and S components reveals shared genomic alterations, thus emphasizing the clonal evolution of CS.

View Article and Find Full Text PDF
Article Synopsis
  • Inflammation is a vital immune response to harm but can become excessive, contributing to various diseases and is not completely understood at the molecular level.
  • The glycoprotein CD44 helps cells take up metals like copper, which, when present in mitochondria of inflammatory macrophages, plays a crucial role in their metabolic and epigenetic changes.
  • Targeting mitochondrial copper with the compound LCC-12 can reduce inflammation and alter macrophage behavior, suggesting a promising new therapeutic approach for managing inflammation and enhancing immune responses.
View Article and Find Full Text PDF

This symposium is the third PSL (Paris Sciences & Lettres) Chemical Biology meeting (2016, 2019, 2023) held at Institut Curie. This initiative originally started at Institut de Chimie des Substances Naturelles (ICSN) in Gif-sur-Yvette (2013, 2014), under the directorship of Professor Max Malacria, with a strong focus on chemistry. It was then continued at the Institut Curie (2015) covering a larger scope, before becoming the official PSL Chemical Biology meeting.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are considered to be the main drivers of inflammatory bowel disease. We investigated whether this permanent insult compels intestinal stem cells to develop strategies to dampen the deleterious effects of ROS. As an adverse effect, this adaptation process may increase their tolerance to oncogenic insults and facilitate their neoplastic transformation.

View Article and Find Full Text PDF

Persister cancer cells represent rare populations of cells resistant to therapy. Cancer cells can exploit epithelial-mesenchymal plasticity to adopt a drug-tolerant state that does not depend on genetic alterations. Small molecules that can interfere with cell plasticity or kill cells in a cell state-dependent manner are highly sought after.

View Article and Find Full Text PDF

Introduction: Epithelial-to-mesenchymal transition (EMT) is associated with tumor aggressiveness, drug resistance, and poor survival in non-small cell lung cancer (NSCLC) and other cancers. The identification of immune-checkpoint ligands (ICPLs) associated with NSCLCs that display a mesenchymal phenotype (mNSCLC) could help to define subgroups of patients who may benefit from treatment strategies using immunotherapy.

Methods: We evaluated ICPL expression in silico in 130 NSCLC cell lines.

View Article and Find Full Text PDF

Background: A current critical need remains in the identification of prognostic and predictive markers in early breast cancer. It appears that a distinctive trait of cancer cells is their addiction to hyperactivation of ribosome biogenesis. Thus, ribosome biogenesis might be an innovative source of biomarkers that remains to be evaluated.

View Article and Find Full Text PDF

Numerous epithelial-mesenchymal transition (EMT) characteristics have now been demonstrated to participate in tumor development. Indeed, EMT is involved in invasion, acquisition of stem cell properties, and therapy-associated resistance of cancer cells. Together, these mechanisms offer advantages in adapting to changes in the tumor microenvironment.

View Article and Find Full Text PDF

Background: The efficacy of immunotherapies in metastatic melanoma depends on a robust T cell infiltration. Oncogenic alterations of tumor cells have been associated to T cell exclusion. Identifying novel cancer cell-intrinsic non-genetic mechanisms of immune escape, the targeting of which would reinstate T cell recruitment, would allow to restore the response to anti-programmed cell death protein 1 (PD-1) antibody therapy.

View Article and Find Full Text PDF

Senescence is a dynamic, multistep program that results in permanent cell cycle arrest and is triggered by developmental or environmental, oncogenic or therapy-induced stress signals. Senescence is considered as a tumor suppressor mechanism that prevents the risk of neoplastic transformation by restricting the proliferation of damaged cells. Cells undergoing senescence sustain important morphological changes, chromatin remodeling and metabolic reprogramming, and secrete pro-inflammatory factors termed senescence-associated secretory phenotype (SASP).

View Article and Find Full Text PDF

Breast cancer cells frequently acquire mutations in faithful DNA repair genes, as exemplified by BRCA-deficiency. Moreover, overexpression of an inaccurate DNA repair pathway may also be at the origin of the genetic instability arising during the course of cancer progression. The specific gain in expression of , encoding the error-prone DNA polymerase Theta (POLθ) involved in theta-mediated end joining (TMEJ), is associated with a characteristic mutational signature.

View Article and Find Full Text PDF

Recent epitranscriptomics studies unravelled that ribosomal RNA (rRNA) 2'O-methylation is an additional layer of gene expression regulation highlighting the ribosome as a novel actor of translation control. However, this major finding lies on evidences coming mainly, if not exclusively, from cellular models. Using the innovative next-generation RiboMeth-seq technology, we established the first rRNA 2'O-methylation landscape in 195 primary human breast tumours.

View Article and Find Full Text PDF

Background: Aryl phosphate esters (APEs) are widely used and commonly present in the environment. Health hazards associated with these compounds remain largely unknown and the effects of diphenyl phosphate (DPhP), one of their most frequent derivatives, are poorly characterized.

Objective: Our aim was to investigate whether DPhP per se may represent a more relevant marker of exposure to APEs than direct assessment of their concentration and determine its potential deleterious biological effects in chronically exposed mice.

View Article and Find Full Text PDF

A characteristic of cancer development is the acquisition of genomic instability, which results from the inaccurate repair of DNA damage. Among double-strand break repair mechanisms induced by oncogenic stress, the highly mutagenic theta-mediated end-joining (TMEJ) pathway, which requires DNA polymerase theta (POLθ) encoded by the gene, has been shown to be overexpressed in several human cancers. However, little is known regarding the regulatory mechanisms of TMEJ and the consequence of its dysregulation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5gsrfils85qr2s706tian7tq1lf1j6hj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once