For more than 60 years, efforts to develop mating-based mosquito control technologies have largely failed to produce solutions that are both effective and scalable, keeping them out of reach of most governments and communities in disease-impacted regions globally. High pest suppression levels in trials have yet to fully translate into broad and effective control solutions. Two primary challenges to date-the need for complex sex-sorting to prevent female releases, and cumbersome processes for rearing and releasing male adult mosquitoes-present significant barriers for existing methods.
View Article and Find Full Text PDFPentameric ligand-gated ion channels (pLGICs) activated by the inhibitory neurotransmitter γ-aminobutyric acid (GABA) are expressed widely in both vertebrate and invertebrate species. One of the best characterised insect GABA-gated chloride channels is RDL, an abbreviation of 'resistance to dieldrin', that was originally identified by genetic screening in Drosophila melanogaster. Here we have cloned the analogous gene from the bumblebee Bombus terrestris audax (BtRDL) and examined its pharmacological properties by functional expression in Xenopus oocytes.
View Article and Find Full Text PDFGlutamate-gated chloride channels (GluCls) are found only in invertebrates and mediate fast inhibitory neurotransmission. The structural and functional diversity of GluCls are produced through assembly of multiple subunits and via posttranscriptional alternations. Alternative splicing is the most common way to achieve this in insect GluCls and splicing occurs primarily at exons 3 and 9.
View Article and Find Full Text PDFAbamectin is one of the most widely used avermectins for agricultural pests control, but the emergence of resistance around the world is proving a major threat to its sustained application. Abamectin acts by directly activating glutamate-gated chloride channels (GluCls) and modulating other Cys-loop ion channels. To date, three mutations occurring in the transmembrane domain of arthropod GluCls are associated with target-site resistance to abamectin: A309V in Plutella xylostella GluCl (PxGluCl), G323D in Tetranychus urticae GluCl1 (TuGluCl1) and G326E in TuGluCl3.
View Article and Find Full Text PDFMany genes increase coding capacity by alternate exon usage. The gene encoding the insect nicotinic acetylcholine receptor (nAChR) α6 subunit, target of the bio-insecticide spinosad, is one example of this and expands protein diversity via alternative splicing of mutually exclusive exons. Here, we show that spinosad resistance in the tomato leaf miner, Tuta absoluta is associated with aberrant regulation of splicing of Taα6 resulting in a novel form of insecticide resistance mediated by exon skipping.
View Article and Find Full Text PDFSpinosad, a widely used and economically important insecticide, targets the nicotinic acetylcholine receptor (nAChRs) of the insect nervous system. Several studies have associated loss of function mutations in the insect nAChR α6 subunit with resistance to spinosad, and in the process identified this particular subunit as the specific target site. More recently a single non-synonymous point mutation, that does not result in loss of function, was identified in spinosad resistant strains of three insect species that results in an amino acid substitution (G275E) of the nAChR α6 subunit.
View Article and Find Full Text PDFWe describe the identification in aphids of a unique heterodimeric voltage-gated sodium channel which has an atypical ion selectivity filter and, unusually for insect channels, is highly insensitive to tetrodotoxin. We demonstrate that this channel has most likely arisen by adaptation (gene fission or duplication) of an invertebrate ancestral mono(hetero)meric channel. This is the only identifiable voltage-gated sodium channel homologue in the aphid genome(s), and the channel's novel selectivity filter motif (DENS instead of the usual DEKA found in other eukaryotes) may result in a loss of sodium selectivity, as indicated experimentally in mutagenised Drosophila channels.
View Article and Find Full Text PDFInsect Biochem Mol Biol
August 2014
High levels of resistance to spinosad, a macrocyclic lactone insecticide, have been reported previously in western flower thrips, Frankliniella occidentalis, an economically important insect pest of vegetables, fruit and ornamental crops. We have cloned the nicotinic acetylcholine receptor (nAChR) α6 subunit from F. occidentalis (Foα6) and compared the nucleotide sequence of Foα6 from susceptible and spinosad-resistant insect populations (MLFOM and R1S respectively).
View Article and Find Full Text PDFBackground: Myzus persicae is a globally important aphid pest that is mainly controlled through the application of chemical insecticides. Recently, a clone of M. persicae exhibiting control-compromising levels of resistance to neonicotinoid insecticides was described.
View Article and Find Full Text PDFMembers of the vertebrate CYP3A subfamily are involved in the metabolism of steroids and a wide range of xenobiotics. In this study two CYP3A-like mRNAs have been isolated from the mussel (Mytilus edulis), and their seasonal expression profile and modulation by estrogens examined. Sexual dimorphism of CYP3A-like mRNA expression was not observed in mussel gonads of individuals collected throughout a year.
View Article and Find Full Text PDFThe brown planthopper, Nilaparvata lugens, is an economically significant pest of rice throughout Asia and has evolved resistance to many insecticides including the neonicotinoid imidacloprid. The resistance of field populations of N. lugens to imidacloprid has been attributed to enhanced detoxification by cytochrome P450 monooxygenases (P450s), although, to date, the causative P450(s) has (have) not been identified.
View Article and Find Full Text PDFBackground: Myzus persicae is a globally important aphid pest with a history of developing resistance to insecticides. Unusually, neonicotinoids have remained highly effective as control agents despite nearly two decades of steadily increasing use. In this study, a clone of M.
View Article and Find Full Text PDFMytilus edulis were exposed to 17beta-estradiol (E2) and the synthetic estrogens ethinyl estradiol (EE2) and estradiol benzoate (EB) for 10 days. Two exposures were performed to determine their effect on vitellogenin (VTG) and estrogen receptor 2 (ER2) mRNA expression at different stages of the reproductive cycle. Significant natural variation was not observed in VTG mRNA expression, though ER2 mRNA expression displayed significantly lower values during January, February and July compared with other times of the year.
View Article and Find Full Text PDFThe aphid Myzus persicae is a globally significant crop pest that has evolved high levels of resistance to almost all classes of insecticide. To date, the neonicotinoids, an economically important class of insecticides that target nicotinic acetylcholine receptors (nAChRs), have remained an effective control measure; however, recent reports of resistance in M. persicae represent a threat to the long-term efficacy of this chemical class.
View Article and Find Full Text PDFTo investigate the effect of estrogenic compounds on the marine mussel Mytilus edulis, an assay was developed to measure the expression of two vertebrate estrogen responsive genes-estrogen receptor (ER) and vitellogenin (VTG) genes. Expression was measured in M. edulis gonads following a 10-day exposure to 200 ng/l 17beta-estradiol (estradiol).
View Article and Find Full Text PDFVitellogenin levels are often used as a biomarker of endocrine disruption in fish. For invertebrates, there is a general lack of knowledge regarding endocrine regulation and, consequently, there are few direct biomarkers of endocrine disruption in such species. This study focuses on the marine mussel Mytilus edulis, which is often employed in biomonitoring studies.
View Article and Find Full Text PDF