Publications by authors named "Pui-Keong Chow"

Palladium(ii) complexes supported by tetradentate [N^C^C^N] and [O^N^C^N] ligand systems display sky blue to red phosphorescence with emission quantum yields and emission lifetimes up to 0.64 and 272 μs, respectively. Femtosecond time-resolved fluorescence (fs-TRF) measurements on these Pd(ii) complexes reveal a fast intersystem crossing from singlet to triplet manifolds with time constants of 0.

View Article and Find Full Text PDF

Palladium(II) complexes are generally reactive toward substitution/reduction, and their biological applications are seldom explored. A new series of palladium(II) N-heterocyclic carbene (NHC) complexes that are stable in the presence of biological thiols are reported. A representative complex, [Pd(C^N^N)(N,N'-nBu2 NHC)](CF3 SO3 ) (Pd1 d, HC^N^N=6-phenyl-2,2'-bipyridine, N,N'-nBu2 NHC=N,N'-di-n-butylimidazolylidene), displays potent killing activity toward cancer cell lines (IC50 =0.

View Article and Find Full Text PDF

Luminescent pincer-type Pt(II)  complexes supported by C-deprotonated π-extended tridentate RC^N^NR' ligands and pentafluorophenylacetylide ligands show emission quantum yields up to almost unity. Femtosecond time-resolved fluorescence measurements and time-dependent DFT calculations together reveal the dependence of excited-state structural distortions of [Pt(RC^N^NR')(CC-C6 F5 )] on the positional isomers of the tridentate ligand. Pt complexes [Pt(R-C^N^NR')(CC-Ar)] are efficient photocatalysts for visible-light-induced reductive CC bond formation.

View Article and Find Full Text PDF

A theoretical investigation on the luminescence efficiency of a series of d(8) transition-metal Schiff base complexes was undertaken. The aim was to understand the different photophysics of [M-salen](n) complexes (salen = N,N'-bis(salicylidene)ethylenediamine; M = Pt, Pd (n = 0); Au (n = +1)) in acetonitrile solutions at room temperature: [Pt-salen] is phosphorescent and [Au-salen](+) is fluorescent, but [Pd-salen] is nonemissive. Based on the calculation results, it was proposed that incorporation of electron-withdrawing groups at the 4-position of the Schiff base ligand should widen the (3)MLCT-(3)MC gap (MLCT = metal-to-ligand charge transfer and MC = metal centered, that is, the dd excited state); thus permitting phosphorescence of the corresponding Pd(II) Schiff base complex.

View Article and Find Full Text PDF

A series of cyclometalated Pd(II) complexes that contain π-extended R-C^N^N-R' (R-C^N^N-R'=3-(6'-aryl-2'-pyridinyl)isoquinoline) and chloride/pentafluorophenylacetylide ligands have been synthesized and their photophysical and photochemical properties examined. The complexes with the chloride ligand are emissive only in the solid state and in glassy solutions at 77 K, whereas the ones with the pentafluorophenylacetylide ligand show phosphorescence in the solid state (λmax =584-632 nm) and in solution (λmax =533-602 nm) at room temperature. Some of the complexes with the pentafluorophenylacetylide ligand show emission with λmax at 585-602 nm upon an increase in the complex concentration in solutions.

View Article and Find Full Text PDF

[Pt(O(∧) N(∧) C(∧) N)]-type complexes are used as single emitters in solution-processed PLEDs with maximum EQEs of 15.55% for green and 12.73% for white devices, which are the highest values ever achieved for PLEDs based on Pt(ii) complexes.

View Article and Find Full Text PDF

The Pt(II) complexes (1-3) bearing tetradentate O^N^C^N ligands display high emission quantum yields (0.76-0.90) and good thermal stability (T(d) > 400 °C).

View Article and Find Full Text PDF

The bright white lights: A series of highly robust platinum(II) complexes supported by tetradentate O N C N ligands with high emission quantum yields (0.72-0.93) and high T(d) (>400 °C) have been synthesized.

View Article and Find Full Text PDF