Publications by authors named "Pui Lam Chiu"

Hummers method is commonly used for the fabrication of graphene oxide (GO) from graphite particles. The oxidation process also leads to the cutting of graphene sheets into small pieces. From a thermodynamic perspective, it seems improbable that the aggressive, somewhat random oxidative cutting process could directly result in graphene nanosheets without destroying the intrinsic π-conjugated structures and the associated exotic properties of graphene.

View Article and Find Full Text PDF

Currently the preferred method for large-scale production of solution-processable graphene is via a nonconductive graphene oxide (GO) pathway, which uncontrollably cuts sheets into small pieces and/or introduces nanometer-sized holes in the basal plane. These structural changes significantly decrease some of graphene's remarkable electrical and mechanical properties. Here, we report an unprecedented fast and scalable approach to avoid these problems and directly produce large, highly conductive graphene sheets.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWNTs) functionalized with -COOH (along with some sulphonation and nitration), and/or modified with chitosan were prepared and tested for their singlet oxygen ((1)O(2)) production. The emission from (1)O(2) observed upon SWNT irradiation at 532 nm was due to a two-photon process, while (1)O(2) production via excitation at 355 nm occurred through a conventional one-photon pathway. The relative quantum yield of (1)O(2) production at excitation wavelength of 532 nm was found to be 0.

View Article and Find Full Text PDF

The overall conductivity of SWNT networks is dominated by the existence of high resistance and tunneling/Schottky barriers at the intertube junctions in the network. Here we report that in situ polymerization of a highly conductive self-doped conducting polymer "skin" around and along single stranded DNA dispersed and functionalized single wall carbon nanotubes can greatly decrease the contact resistance. The polymer skin also acts as "conductive glue" effectively assembling the SWNTs into a conductive network, which decreases the amount of SWNTs needed to reach the high conductive regime of the network.

View Article and Find Full Text PDF

We have found that the polymerization process was 4,500 times faster when a self-doped polyaniline nanocomposite was fabricated using in situ polymerization in the presence of single-stranded DNA-dispersed and -functionalized single-walled carbon nanotubes (ssDNA-SWNTs). More importantly, the quality of the composite was significantly improved: fewer short oligomers were produced, and the self-doped polyaniline backbone had a longer conjugation length and existed in the more stable and conductive emeraldine state. The functionality of the boronic acid group in the composite and the highly improved electronic performance may lead to broad applications of the composite in flexible electronic devices.

View Article and Find Full Text PDF

Dispersion of carbon nanotubes into solvents affects their surface chemistries, electronic structures, and subsequent functionalization. In this Communication, a water-soluble self-doped polyaniline nanocomposite was fabricated by in situ polymerization of the 3-aminophenylboronic acid monomers in the presence of single-stranded DNA dispersed- and functionalized-single-walled carbon nanotubes. For the first time, we found that the carbon nanotubes became novel active stabilizers owing to the DNA functionalization.

View Article and Find Full Text PDF