Publications by authors named "Puhong Wen"

[111]- and {010}-faceted anatase nanocrystals with controllable crystal size and morphology were synthesized from tri-titanate H2Ti3O7 nanosheets by hydrothermal reaction. The nanostructures and the formation reaction mechanism of the obtained TiO2 nanocrystals were investigated using XRD, FE-SEM, and TEM. Furthermore, the photocatalytic and dye-sensitized solar cell (DSSC) performances of the synthesized anatase nanocrystals were also characterized.

View Article and Find Full Text PDF

This paper introduces the formation reactions and reaction mechanisms of a series of potassium niobates from a potassium salt of the Lindquist hexaniobate [Nb6O19](8-) ion under solvothermal conditions. The structure and particle morphology of the potassium niobate product can be controlled easily with the reaction solution alkalinity using this solvothermal process. KNb3O8 with a plate-like morphology, K4Nb6O17·4.

View Article and Find Full Text PDF

The performance of dye-sensitized solar cells (DSCs) is affected strongly by sensitizer-dye adsorption behavior on TiO(2) nanocrystal electrode. This study reports quantitative relationships between DSC cell performance parameters and dye-adsorption parameters for the first time. We discovered a logarithmic relationship between short-circuit photocurrent density (J(sc)) and dye-adsorption equilibrium constant on TiO(2) surface, and a linear relationship between open-circuit potential (V(oc)) and dye-adsorption density on TiO(2) surface for DSCs.

View Article and Find Full Text PDF

A new ion-exchange adsorbent (IEA) derived from Fe(3)O(4)/SiO(2)-GPTMS-DEAE with paramagnetic properties was prepared. Fe(3)O(4) nanoparticles were firstly prepared in water-in-oil microemulsion. The magnetic Fe(3)O(4) particles were modified in situ by hydrolysis and condensation reactions with tetraethoxysilane (TEOS) to form the core-shell Fe(3)O(4)/SiO(2).

View Article and Find Full Text PDF

Anatase-type TiO2 single nanocrystals with boatlike, comblike, sheetlike, leaflike, quadrate, rhombic, and wirelike particle morphologies were prepared by hydrothermal treatment of a layered titanate nanosheet colloidal solution. The formation reactions and surface properties of the TiO2 nanocrystals were investigated using XRD, TEM, TG-DTA analyses, and measurements of BET specific surface area, photocatalytic activity, and ruthenium dye (N719) adsorption. The crystal morphology can be controlled by reaction temperature, pH value of reaction solution, and exfoliating agent.

View Article and Find Full Text PDF