Publications by authors named "Puhl H"

The calcium calmodulin protein kinase II (CaMKII) is a multi-subunit ring assembly with a central hub formed by the association domains. There is evidence for hub polymorphism between and within CaMKII isoforms, but the link between polymorphism and subunit exchange has not been resolved. Here, we present near-atomic resolution cryogenic electron microscopy (cryo-EM) structures revealing that hubs from the α and β isoforms, either standalone or within an β holoenzyme, coexist as 12 and 14 subunit assemblies.

View Article and Find Full Text PDF

Cannabinoid receptors CBR and CBR are G-protein coupled receptors acted upon by endocannabinoids (eCBs), namely 2-arachidonoylglycerol (2-AG) and -arachidonoyl ethanolamine (AEA), with unique pharmacology and modulate disparate physiological processes. A genetically encoded GPCR activation-based sensor that was developed recently-GRAB-has been shown to be capable of monitoring real-time changes in eCB levels in cultured cells and preclinical models. However, its responsiveness to exogenous synthetic cannabinoid agents, particularly antagonists and allosteric modulators, has not been extensively characterized.

View Article and Find Full Text PDF

The binding of calcium/calmodulin (CAM) to calcium/calmodulin-dependent protein kinase II (CaMKII) initiates an ATP-driven cascade that triggers CaMKII autophosphorylation. The autophosphorylation in turn increases the CaMKII affinity for CAM. Here, we studied the ATP dependence of CAM association with the actin-binding CaMKIIβ isoform using single-molecule total internal reflection fluorescence microscopy.

View Article and Find Full Text PDF

Advances in ultra-fast photonics have enabled monitoring of biochemical interactions on a sub nano-second time scale. In addition, picosecond dynamics of intermolecular energy transfer in fluorescent proteins has been observed. Here, we present the development of a genetically encoded fluorescent sensor that can detect changes in hydrophobicity by monitoring ultrafast fluorescence depolarisation.

View Article and Find Full Text PDF

Synaptic functions are mediated and modulated by a coordinated choreography of protein conformational changes and interactions in response to intracellular calcium dynamics. Time-lapse Förster resonance energy transfer can be used to study the dynamics of both conformational changes and protein-protein interactions simultaneously under physiological conditions if two resonance energy transfer reactions can be multiplexed. Binary-FRET is a technique developed to independently monitor the dynamics of calcium-calmodulin dependent protein kinase-II catalytic-domain pair separation in the holoenzyme, and its role in establishing activity-dependent holoenzyme affinity for the NR2B binding fragment of the N-methyl-D-aspartate receptor.

View Article and Find Full Text PDF

Several forms of endocannabinoid (eCB) signaling have been described in the dorsal lateral striatum (DLS), however most experimental protocols used to generate eCBs do not recapitulate the firing patterns of striatal-projecting pyramidal neurons in the cortex or firing patterns of striatal medium spiny neurons. Therefore, it is unclear if current models of eCB signaling in the DLS provide a reliable description of mechanisms engaged under physiological conditions. To address this uncertainty, we investigated mechanisms of eCB mobilization following brief synaptic stimulation that mimics in vivo patterns of neural activity in the DLS.

View Article and Find Full Text PDF

Endocannabinoids (eCBs) are retrograde neuromodulators with important functions in a wide range of physiological processes, but their in vivo dynamics remain largely uncharacterized. Here we developed a genetically encoded eCB sensor called GRAB. GRAB consists of a circular-permutated EGFP and the human CB1 cannabinoid receptor, providing cell membrane trafficking, second-resolution kinetics with high specificity for eCBs, and shows a robust fluorescence response at physiological eCB concentrations.

View Article and Find Full Text PDF

Seven-transmembrane receptors signal via G-protein- and β-arrestin-dependent pathways. We describe a peripheral CBR antagonist (MRI-1891) highly biased toward inhibiting CBR-induced β-arrestin-2 (βArr2) recruitment over G-protein activation. In obese wild-type and βArr2-knockout (KO) mice, MRI-1891 treatment reduces food intake and body weight without eliciting anxiety even at a high dose causing partial brain CBR occupancy.

View Article and Find Full Text PDF

Interoceptive and exteroceptive signals, and the corresponding coordinated control of internal organs and sensory functions, including pain, are received and orchestrated by multiple neurons within the peripheral, central and autonomic nervous systems. A central aim of the present report is to obtain a molecularly informed basis for analgesic drug development aimed at peripheral rather than central targets. We compare three key peripheral ganglia: nodose, sympathetic (superior cervical), and dorsal root ganglia in the rat, and focus on their molecular composition using next-gen RNA-Seq, as well as their neuroanatomy using immunocytochemistry and hybridization.

View Article and Find Full Text PDF

Na1.8 channels play a crucial role in regulating the action potential in nociceptive neurons. A single nucleotide polymorphism in the human Na1.

View Article and Find Full Text PDF

Fluorescent proteins (FPs) have revolutionized cell biology by allowing genetic tagging of specific proteins inside living cells. In conjunction with Förster's resonance energy transfer (FRET) measurements, FP-tagged proteins can be used to study protein-protein interactions and estimate distances between tagged proteins. FRET is mediated by weak Coulombic dipole-dipole coupling of donor and acceptor fluorophores that behave independently, with energy hopping discretely and incoherently between fluorophores.

View Article and Find Full Text PDF

Activation of short-chain free fatty acid receptors 3 (FFAR3) has been suggested to promote sympathetic outflow in postganglionic sympathetic neurons or hamper it by a negative coupling to N-type calcium (Ca2.2) channels. Heterogeneity of FFAR3 expression in sympathetic neurons, however, renders single neurons studies extremely time-consuming in wild-type mice.

View Article and Find Full Text PDF

Genetically encoded biosensors function by linking structural change in a protein construct, typically tagged with one or more fluorescent proteins, to changes in a biological parameter of interest (such as calcium concentration, pH, phosphorylation-state, etc.). Typically, the structural change triggered by alterations in the bio-parameter is monitored as a change in either fluorescent intensity, or lifetime.

View Article and Find Full Text PDF

Key Points: Chronic limb ischaemia, characterized by inflammatory mediator release and a low extracellular pH, leads to acid-sensing ion channel (ASIC) activation and reflexively increases mean arterial pressure; endomorphin release is also increased under inflammatory conditions. We examined the modulation of ASIC currents by endomorphins in sensory neurons from rats with freely perfused and ligated femoral arteries: peripheral artery disease (PAD) model. Endomorphins potentiated sustained ASIC currents in both groups of dorsal root ganglion neurons, independent of mu opioid receptor stimulation or G protein activation.

View Article and Find Full Text PDF

While kinases are typically composed of one or two subunits, calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII) is composed of 8-14 subunits arranged as pairs around a central core. It is not clear if the CaMKII holoenzyme functions as an assembly of independent subunits, as catalytic pairs, or as a single unit. One strategy to address this question is to genetically engineer monomeric and dimeric CaMKII and evaluate how their activity compares to the wild-type (WT) holoenzyme.

View Article and Find Full Text PDF

Rem2 is a member of the RGK subfamily of RAS small GTPases. Rem2 inhibits high voltage activated calcium channels, is involved in synaptogenesis, and regulates dendritic morphology. Rem2 is the primary RGK protein expressed in the nervous system, but to date, the precise expression patterns of this protein are unknown.

View Article and Find Full Text PDF

FFAR3 (GPR41) is a G-protein coupled receptor for which short-chain fatty acids serve as endogenous ligands. The receptor is found on gut enteroendocrine L-cells, pancreatic β-cells, and sympathetic neurons, and is implicated in obesity, diabetes, allergic airway disease, and altered immune function. In primates, FFAR3 is segmentally duplicated resulting in GPR42, a gene currently classified as a suspected pseudogene.

View Article and Find Full Text PDF

6-Alkoxy-5-aryl-3-pyridincarboxamides, including the brain-penetrant compound 14G: [5-(4-chlorophenyl)-6-(cyclopropylmethoxy)-N-[(1R,2R)-2-hydroxy-cyclohexyl]-3-pyridinecarboxamide] and its peripherally restricted analog 14H: [5-(4-chlorophenyl)-N-[(1R,2R)-2-hydroxycyclohexyl]-6-(2-methoxyethoxy)-3-pyridinecarboxamide], have been recently introduced as selective, high-affinity antagonists of the human cannabinoid-1 receptor (hCB1R). Binding analyses revealed two orders of magnitude lower affinity of these compounds for mouse and rat versus human CB1R, whereas the affinity of rimonabant is comparable for all three CB1Rs. Modeling of ligand binding to CB1R and binding assays with native and mutant (Ile105Met) hCB1Rs indicate that the Ile105 to Met mutation in rodent CB1Rs accounts for the species-dependent affinity of 14G: and 14H: .

View Article and Find Full Text PDF

Under physiological conditions, the voltage-gated sodium channel Nav1.8 is expressed almost exclusively in primary sensory neurons. The mechanism restricting Nav1.

View Article and Find Full Text PDF

Between 8 to 14 calcium-calmodulin (Ca(2+)/CaM) dependent protein kinase-II (CaMKII) subunits form a complex that modulates synaptic activity. In living cells, the autoinhibited holoenzyme is organized as catalytic-domain pairs distributed around a central oligomerization-domain core. The functional significance of catalytic-domain pairing is not known.

View Article and Find Full Text PDF
Article Synopsis
  • RGK proteins are part of the Ras superfamily and interact with Ca2+ channel β subunits, affecting voltage-gated Ca2+ channel function and various cellular processes.
  • Researchers found RGK-like homologs in different animal species, including zebrafish and fruit flies, which also reduced Ca2+ current density when expressed in mammalian neurons.
  • Sequence comparisons indicate that key features of RGK proteins have been conserved throughout evolution, suggesting their ability to modify Ca2+ channel function originated over 550 million years ago before the split between protostomes and deuterostomes.
View Article and Find Full Text PDF

Free fatty acids receptor 3 (FFA3, GPR41) and 2 (FFA2, GPR43), for which the short-chain fatty acids (SCFAs) acetate and propionate are agonist, have emerged as important G-protein-coupled receptors influenced by diet and gut flora composition. A recent study (Kimura et al., 2011) demonstrated functional expression of FFA3 in the rodent sympathetic nervous system (SNS) providing a potential link between nutritional status and autonomic function.

View Article and Find Full Text PDF

Recent studies propose that N-arachidonyl glycine (NAGly), a carboxylic analogue of anandamide, is an endogenous ligand of the Gα(i/o) protein-coupled receptor 18 (GPR18). However, a high-throughput β-arrestin-based screen failed to detect activation of GPR18 by NAGly (Yin et al., 2009; JBC, 18:12328).

View Article and Find Full Text PDF

Transgenic mice expressing eGFP under population specific promoters are widely used in neuroscience to identify specific subsets of neurons in situ and as sensors of neuronal activity in vivo. Mice expressing eGFP from a bacterial artificial chromosome under the Nr4a1 promoter have high expression within the basal ganglia, particularly within the striosome compartments and striatal-like regions of the extended amygdala (bed nucleus of the stria terminalis, striatal fundus, central amygdaloid nucleus and intercalated cells). Grossly, eGFP expression is inverse to the matrix marker calbindin 28K and overlaps with mu-opioid receptor immunoreactivity in the striatum.

View Article and Find Full Text PDF

Expression of heterologous proteins in adult mammalian neurons is a valuable technique for the study of neuronal function. The post-mitotic nature of mature neurons prevents effective DNA transfection using simple, cationic lipid-based methods. Adequate heterologous protein expression is often only achievable using complex techniques that, in many cases, are associated with substantial toxicity.

View Article and Find Full Text PDF