Publications by authors named "Puglielli L"

Article Synopsis
  • * Accurate measurement of these APLs, particularly their specific fatty acid connections, remains difficult with existing methods.
  • * The study introduces a new approach using isotopic labeling and high-resolution ion mobility MS to effectively quantify APL -isomers, revealing their changes in Alzheimer’s disease models, thus paving the way for better understanding of their role in health and disease.
View Article and Find Full Text PDF

The acetylation of autophagy protein 9 A (ATG9A) in the lumen of the endoplasmic reticulum (ER) by ATase1 and ATase2 regulates the induction of reticulophagy. Analysis of the ER-specific ATG9A interactome identified calreticulin (CALR), an ER luminal Ca-binding chaperone, as key for ATG9A activity. Specifically, if acetylated, ATG9A is sequestered by CALR and prevented from engaging FAM134B and SEC62.

View Article and Find Full Text PDF

Caloric restriction (CR) is a widely recognized geroprotective intervention that slows or prevents Alzheimer's disease (AD) in animal models. CR is typically implemented via feeding mice a single meal per day; as CR mice rapidly consume their food, they are subject to a prolonged fast between meals. While CR has been shown to improve metabolic and cognitive functions and suppress pathological markers in AD mouse models, the specific contributions of fasting versus calorie reduction remains unclear.

View Article and Find Full Text PDF

Age is the greatest risk factor for Alzheimer's disease (AD) as well as for other disorders that increase the risk of AD such as diabetes and obesity. There is growing interest in determining if interventions that promote metabolic health can prevent or delay AD. Acarbose is an anti-diabetic drug that not only improves glucose homeostasis, but also extends the lifespan of wild-type mice.

View Article and Find Full Text PDF

Despite the efforts to identify fluid biomarkers to improve diagnosis of Frontotemporal dementia (FTD), only a few candidates have been described in recent years. In a previous study, we identified three circulating miRNAs (miR-92a-3p, miR-320a and miR-320b) differentially expressed in FTD patients with respect to healthy controls and/or Alzheimer's disease (AD) patients. Now, we investigated whether those changes could be due to miRNAs contained in neuron-derived extracellular vesicles (NDEVs).

View Article and Find Full Text PDF

Dysregulated glycerophospholipid (GP) metabolism in the brain is associated with the progression of neurodegenerative diseases including Alzheimer's disease (AD). Routine liquid chromatography-mass spectrometry (LC-MS)-based large-scale lipidomic methods often fail to elucidate subtle yet important structural features such as sn-position, hindering the precise interrogation of GP molecules. Leveraging high-resolution demultiplexing (HRdm) ion mobility spectrometry (IMS), we develop a four-dimensional (4D) lipidomic strategy to resolve GP sn-position isomers.

View Article and Find Full Text PDF

The endoplasmic reticulum acetylation machinery has emerged as a new branch of the larger endoplasmic reticulum quality control system. It regulates the selection of correctly folded polypeptides as well as reticulophagy-mediated removal of toxic protein aggregates with the former being a particularly important aspect of the proteostatic functions of endoplasmic reticulum acetylation. Essential to this function is the Nε-lysine acetyltransferase activity of acetyltransferase 1 and acetyltransferase 2, which regulates the induction of endoplasmic reticulum-specific autophagy through the acetylation of the autophagy-related protein 9A.

View Article and Find Full Text PDF

Age is the greatest risk factor for Alzheimer's disease (AD) as well as for other disorders that increase the risk of AD such as diabetes and obesity. There is growing interest in determining if interventions that promote metabolic health can prevent or delay AD. Acarbose is an anti-diabetic drug that not only improves glucose homeostasis, but also extends the lifespan of wild-type mice.

View Article and Find Full Text PDF

Dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and dietary protein restriction extends the lifespan and healthspan of mice. In this study, we examined the effect of protein restriction (PR) on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the significance of d-form amino acids (d-AAs) in neurological processes, despite l-enantiomers being more common, and addresses challenges in detecting low-abundance d-AAs using mass spectrometry.
  • It presents a novel labeling strategy, termed CHRISTMAS, that employs chiral derivatization reagents (l-DiLeu and d-DiLeu) to enhance the chromatic separation and quantification of both d- and l-AAs, particularly in complex biological samples.
  • The researchers successfully measured amino acid levels in mouse brains, revealing important differences between d- and l-AAs which may relate to aging, Alzheimer's disease progression, and neurodegeneration.
View Article and Find Full Text PDF

The brain is a high energy tissue, and the cell types of which it is comprised are distinct in function and in metabolic requirements. The transcriptional co-activator PGC-1a is a master regulator of mitochondrial function and is highly expressed in the brain; however, its cell-type specific role in regulating metabolism has not been well established. Here, we show that PGC-1a is responsive to aging and that expression of the neuron specific PGC-1a isoform allows for specialization in metabolic adaptation.

View Article and Find Full Text PDF

Dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and many independent groups of researchers have shown that dietary protein restriction (PR) extends the lifespan and healthspan of mice. Here, we examined the effect of PR on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD.

View Article and Find Full Text PDF

Cytosolic citrate is imported from the mitochondria by SLC25A1, and from the extracellular milieu by SLC13A5. In the cytosol, citrate is used by ACLY to generate acetyl-CoA, which can then be exported to the endoplasmic reticulum (ER) by SLC33A1. Here, we report the generation of mice with systemic overexpression (sTg) of SLC25A1 or SLC13A5.

View Article and Find Full Text PDF

Single-cell (SC) analysis provides unique insight into individual cell dynamics and cell-to-cell heterogeneity. Here, we utilize trapped ion mobility separation coupled with dual-polarity ionization mass spectrometry imaging (MSI) to enable high-throughput in situ profiling of the SC lipidome. Multimodal SC imaging, in which dual-polarity-mode MSI is used to perform serial data acquisition runs on individual cells, significantly enhanced SC lipidome coverage.

View Article and Find Full Text PDF

Background: Key cellular metabolites reflecting the immediate activity of metabolic enzymes as well as the functional metabolic state of intracellular organelles can act as powerful signal regulators to ensure the activation of homeostatic responses. The citrate/acetyl-CoA pathway, initially recognized for its role in intermediate metabolism, has emerged as a fundamental branch of this nutrient-sensing homeostatic response. Emerging studies indicate that fluctuations in acetyl-CoA availability within different cellular organelles and compartments provides substrate-level regulation of many biological functions.

View Article and Find Full Text PDF

The selective degradation of mitochondria through mitophagy is a crucial process for maintaining mitochondrial function and cellular health. Mitophagy is a specialized form of selective autophagy that uses unique machinery to recognize and target damaged mitochondria for mitophagosome- and lysosome-dependent degradation. This process is particularly important in cells with high metabolic activity like neurons, and the accumulation of defective mitochondria is a common feature among neurodegenerative disorders.

View Article and Find Full Text PDF

Malfunction of autophagy contributes to the progression of many chronic age-associated diseases. As such, improving normal proteostatic mechanisms is an active target for biomedical research and a key focal area for aging research. Endoplasmic reticulum (ER)-based acetylation has emerged as a mechanism that ensures proteostasis within the ER by regulating the induction of ER specific autophagy.

View Article and Find Full Text PDF

N ε-lysine acetylation within the lumen of the endoplasmic reticulum is a recently characterized protein quality control system that positively selects properly folded glycoproteins in the early secretory pathway. Overexpression of the endoplasmic reticulum acetyl-CoA transporter AT-1 in mouse forebrain neurons results in increased dendritic branching, spine formation and an autistic-like phenotype that is attributed to altered glycoprotein flux through the secretory pathway. AT-1 overexpressing neurons maintain the cytosolic pool of acetyl-CoA by upregulation of SLC25A1, the mitochondrial citrate/malate antiporter and ATP citrate lyase, which converts cytosolic citrate into acetyl-CoA.

View Article and Find Full Text PDF

Endoplasmic reticulum-based -lysine acetylation serves as an important protein quality control system for the secretory pathway. Dysfunctional endoplasmic reticulum-based acetylation, as caused by overexpression of the acetyl coenzyme A transporter AT-1 in the mouse, results in altered glycoprotein flux through the secretory pathway and an autistic-like phenotype. AT-1 works in concert with SLC25A1, the citrate/malate antiporter in the mitochondria, SLC13A5, the plasma membrane sodium/citrate symporter and ATP citrate lyase, the cytosolic enzyme that converts citrate into acetyl coenzyme A.

View Article and Find Full Text PDF

The acetylation of ATG9A within the endoplasmic reticulum (ER) lumen regulates the induction of reticulophagy. ER acetylation is ensured by AT-1/SLC33A1, a membrane transporter that maintains the cytosol-to-ER flux of acetyl-CoA. Defective AT-1 activity, as caused by heterozygous/homozygous mutations and gene duplication events, results in severe disease phenotypes.

View Article and Find Full Text PDF

N-lysine acetylation in the ER lumen is a recently discovered quality control mechanism that ensures proteostasis within the secretory pathway. The acetyltransferase reaction is carried out by two type-II membrane proteins, ATase1/NAT8B and ATase2/NAT8. Prior studies have shown that reducing ER acetylation can induce reticulophagy, increase ER turnover, and alleviate proteotoxic states.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

Nε-lysine acetylation in the ER is an essential component of the quality control machinery. ER acetylation is ensured by a membrane transporter, AT-1/SLC33A1, which translocates cytosolic acetyl-CoA into the ER lumen, and two acetyltransferases, ATase1 and ATase2, which acetylate nascent polypeptides within the ER lumen. Dysfunctional AT-1, as caused by gene mutation or duplication events, results in severe disease phenotypes.

View Article and Find Full Text PDF

Background & Aims: Maintaining endoplasmic reticulum (ER) proteostasis is essential for pancreatic acinar cell function. Under conditions of severe ER stress, activation of pathogenic unfolded protein response pathways plays a central role in the development and progression of pancreatitis. Less is known, however, of the consequence of perturbing ER-associated post-translational protein modifications on pancreatic outcomes.

View Article and Find Full Text PDF