The DNA damage response is essential to safeguard genome integrity. Although the contribution of chromatin in DNA repair has been investigated, the contribution of chromosome folding to these processes remains unclear. Here we report that, after the production of double-stranded breaks (DSBs) in mammalian cells, ATM drives the formation of a new chromatin compartment (D compartment) through the clustering of damaged topologically associating domains, decorated with γH2AX and 53BP1.
View Article and Find Full Text PDFImmunoglobulin class switch recombination (CSR) plays an important role in humoral imm\une responses by changing the effector functions of antibodies. CSR occurs between highly repetitive switch (S) sequences located upstream of immunoglobulin constant gene exons. Switch sequences differ in size, the nature of their repeats, and the density of the motifs targeted by the activation-induced cytidine deaminase (AID), the enzyme that initiates CSR.
View Article and Find Full Text PDFTranscriptionally active loci are particularly prone to breakage and mounting evidence suggests that DNA Double-Strand Breaks arising in active genes are handled by a dedicated repair pathway, Transcription-Coupled DSB Repair (TC-DSBR), that entails R-loop accumulation and dissolution. Here, we uncover a function for the Bloom RecQ DNA helicase (BLM) in TC-DSBR in human cells. BLM is recruited in a transcription dependent-manner at DSBs where it fosters resection, RAD51 binding and accurate Homologous Recombination repair.
View Article and Find Full Text PDFAlthough long overlooked, it is now well understood that DNA does not systematically assemble into a canonical double helix, known as B-DNA, throughout the entire genome but can also accommodate other structures including DNA hairpins, G-quadruplexes and RNA:DNA hybrids. Notably, these non-canonical DNA structures form preferentially at transcriptionally active loci. Acting as replication roadblocks and being targeted by multiple machineries, these structures weaken the genome and render it prone to damage, including DNA double-strand breaks (DSB).
View Article and Find Full Text PDFAtaxia with oculomotor apraxia 2 (AOA-2) and amyotrophic lateral sclerosis (ALS4) are neurological disorders caused by mutations in the gene encoding for senataxin (SETX), a putative RNA:DNA helicase involved in transcription and in the maintenance of genome integrity. Here, using ChIP followed by high throughput sequencing (ChIP-seq), we report that senataxin is recruited at DNA double-strand breaks (DSBs) when they occur in transcriptionally active loci. Genome-wide mapping unveiled that RNA:DNA hybrids accumulate on DSB-flanking chromatin but display a narrow, DSB-induced, depletion near DNA ends coinciding with senataxin binding.
View Article and Find Full Text PDFDeveloping lymphocytes somatically diversify their antigen-receptor loci through V(D)J recombination. The process is associated with allelic exclusion, which results in monoallelic expression of an antigen receptor locus. Various cis-regulatory elements control V(D)J recombination in a developmentally regulated manner, but their role in allelic exclusion is still unclear.
View Article and Find Full Text PDFThe assembly of antigen receptor loci requires a developmentally regulated and lineage-specific recombination between variable (V), diversity (D), and joining (J) segments through V(D)J recombination. The process is regulated by accessibility control elements, including promoters, insulators, and enhancers. The IgH locus undergoes two recombination steps, D-J(H) and then V(H)-DJ(H), but it is unclear how the availability of the DJ(H) substrate could influence the subsequent V(H)-DJ(H) recombination step.
View Article and Find Full Text PDFThe transformation/transcription domain-associated protein (TRRAP) is a common component of many histone acetyltransferase (HAT) complexes. Targeted-deletion of the Trrap gene led to early embryonic lethality and revealed a critical function of TRRAP in cell proliferation. Here, we investigate the function of TRRAP in murine B cells.
View Article and Find Full Text PDFIn B lymphocytes, class switch recombination (CSR) machinery targets highly repetitive sequences, called switch (S) sequences, in the constant domain of the immunoglobulin heavy chain (IgH) locus. Cotranscriptional generation of R loops at S sequences provides the substrate for the mutagenic enzyme AID (Activation-Induced cytidine Deaminase), which initiates the DNA breaks at the transcribed sequences. Both sense and antisense transcripts across the S regions have been reported.
View Article and Find Full Text PDFClass switch recombination (CSR) occurs between highly repetitive sequences called switch (S) regions and is initiated by activation-induced cytidine deaminase (AID). CSR is preceded by a bidirectional transcription of S regions but the relative importance of sense and antisense transcription for CSR in vivo is unknown. We generated three mouse lines in which we attempted a premature termination of transcriptional elongation by inserting bidirectional transcription terminators upstream of Sμ, upstream of Sγ3 or downstream of Sγ3 sequences.
View Article and Find Full Text PDFChromatin modifications and chromatin-modifying enzymes are believed to play a major role in the process of DNA repair. The histone acetyl transferase Tip60 is physically recruited to DNA DSBs (double-strand breaks) where it mediates histone acetylation. In the present study, we show, using a reporter system in mammalian cells, that Tip60 expression is required for homology-driven repair, strongly suggesting that Tip60 participates in DNA DSB repair through homologous recombination.
View Article and Find Full Text PDFThe NeoR gene has often been used to unravel the mechanisms underlying long-range interactions between promoters and enhancers during V(D)J assembly and class switch recombination (CSR) in the immunoglobulin heavy chain (IgH) locus. This approach led to the notion that CSR is regulated through competition of germ-line (GL) promoters for activities displayed by the 3' regulatory region (3'RR). This polarized long-range effect of the 3'RR is disturbed upon insertion of NeoR gene in the IgH constant (C(H)) region, where only GL transcription derived from upstream GL promoters is impaired.
View Article and Find Full Text PDFHuman DNA polymerase eta (Pol eta) modulates susceptibility to skin cancer by promoting translesion DNA synthesis (TLS) past sunlight-induced cyclobutane pyrimidine dimers. Despite its well-established role in TLS synthesis, the role of Pol eta in maintaining genome stability in the absence of external DNA damage has not been well explored. We show here that short hairpin RNA-mediated depletion of Pol eta from undamaged human cells affects cell cycle progression and the rate of cell proliferation and results in increased spontaneous chromosome breaks and common fragile site expression with the activation of ATM-mediated DNA damage checkpoint signaling.
View Article and Find Full Text PDFAccurate DNA replication during S-phase is fundamental to maintain genome integrity. During this critical process, replication forks frequently encounter obstacles that impede their progression. While the regulatory pathways which act in response to exogenous replication stress are beginning to emerge, the mechanisms by which fork integrity is maintained at naturally occurring endogenous replication-impeding sequences remains obscure.
View Article and Find Full Text PDFPhosphorylated histone H2AX ("gamma-H2AX") recruits MDC1, 53BP1, and BRCA1 to chromatin near a double-strand break (DSB) and facilitates efficient repair of the break. It is unclear to what extent gamma-H2AX-associated proteins act in concert and to what extent their functions within gamma-H2AX chromatin are distinct. We addressed this question by comparing the mechanisms of action of MDC1 and 53BP1 in DSB repair (DSBR).
View Article and Find Full Text PDFHistone H2AX has a role in suppressing genomic instability and cancer. However, the mechanisms by which it performs these functions are poorly understood. After DNA breakage, H2AX is phosphorylated on serine 139 in chromatin near the break.
View Article and Find Full Text PDFDNA Repair (Amst)
February 2005
Sister chromatid recombination (SCR) is a potentially error-free pathway for the repair of double-strand breaks arising during replication and is thought to be important for the prevention of genomic instability and cancer. Analysis of sister chromatid recombination at a molecular level has been limited by the difficulty of selecting specifically for these events. To overcome this, we have developed a novel "nested intron" reporter that allows the positive selection in mammalian cells of "long tract" gene conversion events arising between sister chromatids.
View Article and Find Full Text PDFOverexpression of DNA polymerase beta (polbeta), an error-prone DNA repair enzyme, has been shown to result in mutagenesis, aneuploidy and tumorigenesis. To further investigate the molecular basis leading to cancer-associated genetic changes, we examined whether the DNA polbeta could affect homologous recombination (HR). Using mammalian cells carrying an intrachromosomal recombination marker we showed that the DNA polbeta overexpression increased the HR mostly by enhancing gene conversion.
View Article and Find Full Text PDFThe hereditary breast and ovarian cancer susceptibility genes, BRCA1 and BRCA2, have established roles in genome integrity maintenance and in the control of homologous recombination. Recent work has produced valuable insights into the mechanisms of action of the gene products. This review summarizes some of these advances, and attempts to place them in the context of known functions of the genes.
View Article and Find Full Text PDFThe 5' end of the breast and ovarian cancer-susceptibility gene BRCA1 has previously been shown to lie within a duplicated region of chromosome band 17q21. The duplicated region contains BRCA1 exons 1A, 1B, and 2 and their surrounding introns; as a result, a BRCA1 pseudogene (PsiBRCA1) lies upstream of BRCA1. However, the sequence of this segment remained essentially unknown.
View Article and Find Full Text PDFGenetic linkage data have shown that alterations of the BRCA1 gene are responsible for the majority of hereditary breast and ovarian cancers. BRCA1 germline mutations, however, are found less frequently than expected. Mutation detection strategies, which are generally based on the polymerase chain reaction, therefore focus on point and small gene alterations.
View Article and Find Full Text PDFHeritable predisposition to breast and/or ovarian cancer is determined, in part, by germline mutation affecting one of two tumor suppressor genes, BRCA1 and BRCA2 (Miki et al., 1994; Wooster et al., 1995).
View Article and Find Full Text PDFConstitutive large deletions and duplications of BRCA1 resulting from Alu-mediated recombination account for a significant proportion of disease-causing mutations in breast and/or ovarian cancer families. Using Southern blot analysis and a protein truncation test (PTT), we have identified a 7.1 kb germline deletion in two families with breast and ovarian cancer.
View Article and Find Full Text PDF