Citrus melanose, caused by Diaporthe citri, is one of the most important and widespread fungal diseases of citrus. Previous studies demonstrated that the citrus host was able to trigger the defense response to restrict the spread of D. citri.
View Article and Find Full Text PDFBackground: Plants can recruit beneficial microbes to enhance their ability to defend against pathogens. However, in contrast to the intensively studied roles of the rhizosphere microbiome in suppressing plant pathogens, the collective community-level change and effect of the phyllosphere microbiome in response to pathogen invasion remains largely elusive.
Results: Here, we integrated 16S metabarcoding, shotgun metagenomics and culture-dependent methods to systematically investigate the changes in phyllosphere microbiome between infected and uninfected citrus leaves by Diaporthe citri, a fungal pathogen causing melanose disease worldwide.
The fungal pathogen is a major cause of diseases in citrus. One common disease is melanose, responsible for large economic losses to the citrus fruit industry. However, very little is known about the epidemiology and genetic structure of .
View Article and Find Full Text PDFMelanose disease is one the most widely distributed and economically important fungal diseases of citrus worldwide. The causative agent is the filamentous fungus (syn. ).
View Article and Find Full Text PDFCrop production, including mushroom farming, may cause significant changes to the underlying substrates which in turn, can influence crop quality and quantity during subsequent years. Here in this study, we analyzed the production of the medicinal mushroom Ganoderma lingzhi and the associated soil microbial communities and soil chemical features over 24 months from April 2015 to April 2017. This Basidiomycete mushroom, known as Lingzhi in China, is commonly found on dead trees and wood logs in temperate and subtropical forests.
View Article and Find Full Text PDFIn the saline-affected ecosystem, fungi have huge potential to promote growth, induce disease resistance and enhance tolerance against salt-stress of host plants. Since areas of plowland are gradually decreasing, the reclamation of coastal saline lands could play a crucial role in maintaining agricultural productivity and crop security globally. Therefore, it is of great significance to explore the fungal diversity in the coastal saline ecosystem.
View Article and Find Full Text PDF