As a result of a long evolutionary history, serotonin plays a variety of physiological roles, including neurological, cardiovascular, gastrointestinal, and endocrine functions. While many of these activities can be accommodated within the serotoninergic activity, recent findings have revealed an unsuspected role of serotonin in orchestrating host and microbial dialogue at the tryptophan dining table, to the benefit of local and systemic homeostasis. Herein we review the dual role of serotonin at the host-microbe interface and discuss how unraveling the interconnections among the host and microbial pathways of tryptophan degradation may help to accommodate the versatility of serotonin in physiology and pathology.
View Article and Find Full Text PDFPhenotypic drug discovery (PDD) involves screening compounds for their effects on cells, tissues, or whole organisms without necessarily understanding the underlying molecular targets. PDD differs from target-based strategies as it does not require knowledge of a specific drug target or its role in the disease. This approach can lead to the discovery of drugs with unexpected therapeutic effects or applications and allows for the identification of drugs based on their functional effects, rather than through a predefined target-based approach.
View Article and Find Full Text PDFBackground: The recent Coronavirus Disease 2019 (COVID-19) pandemic has dramatically exposed our gap in understanding the pathogenesis of airborne infections. Within such a context, it is increasingly clear that the nasal cavity represents a critical checkpoint not only in the initial colonization phase but also in shaping any infectious . This is particularly relevant to COVID-19 in that the nasal cavity is characterized by high-level expression of the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) receptor, Angiotensin-Converting Enzyme 2 (ACE2), all along the respiratory tract.
View Article and Find Full Text PDFThe functional interdependencies between the molecular components of a biological process demand for a network medicine platform that integrates systems biology and network science, to explore the interactions among biological components in health and disease. Access to large-scale omics datasets (genomics, transcriptomics, proteomics, metabolomics, metagenomics, phenomics, etc.) has significantly advanced our opportunity along this direction.
View Article and Find Full Text PDFThe pathogenesis of coronavirus disease 2019 (COVID-19) is associated with a hyperinflammatory response. The mechanisms of SARS-CoV-2-induced inflammation are scantly known. Methylglyoxal (MG) is a glycolysis-derived byproduct endowed with a potent glycating action, leading to the formation of advanced glycation end products (AGEs), the main one being MG-H1.
View Article and Find Full Text PDFBackground: Chronic systemic inflammation reduces the bioavailability of circulating endothelial progenitor cells (EPCs). Indoleamine 2,3-dioxygenase 1 (IDO1), a key enzyme of immune tolerance catalyzing the initial step of tryptophan degradation along the so-called l-kynurenine (l-kyn) pathway, that is induced by inflammatory stimuli and exerts anti-inflammatory effects. A specific relationship between IDO1 activity and circulating EPC numbers has not yet been investigated.
View Article and Find Full Text PDFConventional dendritic cells (cDCs), cDC1 and cDC2, act both to initiate immunity and maintain self-tolerance. The tryptophan metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is used by cDCs in maintaining tolerance, but its role in different subsets remains unclear. At homeostasis, only mature CCR7 cDC1 expressed IDO1 that was dependent on IRF8.
View Article and Find Full Text PDFThe Aryl hydrocarbon receptor (AhR) is a critical regulator of both innate and adaptive immune responses, with potent immunomodulatory effects that makes this receptor an attractive molecular target for novel therapeutics. Accumulating evidence indicates that diverse-both host's and microbial-tryptophan metabolites profoundly regulate the immune system in the host via AhR, promoting either tolerance or immunity, largely as a function of the qualitative and quantitative nature of the metabolites being contributed by either source. Additional findings indicate that host and microbiota-derived tryptophan metabolic pathways can influence the outcome of immune responses to tumors.
View Article and Find Full Text PDFMutations in the WFS1 gene, encoding wolframin (WFS1), cause endoplasmic reticulum (ER) stress and are associated with a rare autosomal-recessive disorder known as Wolfram syndrome (WS). WS is clinically characterized by childhood-onset diabetes mellitus, optic atrophy, deafness, diabetes insipidus and neurological signs. We identified two novel WFS1 mutations in a patient with WS, namely, c.
View Article and Find Full Text PDFIndoleamine 2,3-dioxygenases (IDOs) degrade l-tryptophan to kynurenines and drive the de novo synthesis of nicotinamide adenine dinucleotide. Unsurprisingly, various invertebrates, vertebrates, and even fungi produce IDO. In mammals, IDO1 also serves as a homeostatic regulator, modulating immune response to infection via local tryptophan deprivation, active catabolite production, and non-enzymatic cell signaling.
View Article and Find Full Text PDFKnowledge of a protein's spatial dynamics at the subcellular level is key to understanding its function(s), interactions, and associated intracellular events. Indoleamine 2,3-dioxygenase 1 (IDO1) is a cytosolic enzyme that controls immune responses via tryptophan metabolism, mainly through its enzymic activity. When phosphorylated, however, IDO1 acts as a signaling molecule in plasmacytoid dendritic cells (pDCs), thus activating genomic effects, ultimately leading to long-lasting immunosuppression.
View Article and Find Full Text PDFEndotoxin tolerance aims at opposing hyperinflammatory responses to lipopolysaccharide (LPS) exposure. The aryl hydrocarbon receptor (AhR) participates in protection against LPS-mediated tissue damage, as it plays a necessary role in restraining the proinflammatory action of IL-1β and TNF-α while fostering the expression of protective TGF-β. TGF-β, in turn, promotes durable expression of the immune regulatory enzyme indoleamine 2,3-dioxygenase 1 (IDO1).
View Article and Find Full Text PDFl-tryptophan (Trp), an essential amino acid for mammals, is the precursor of a wide array of immunomodulatory metabolites produced by the kynurenine and serotonin pathways. The kynurenine pathway is a paramount source of several immunoregulatory metabolites, including l-kynurenine (Kyn), the main product of indoleamine 2,3-dioxygenase 1 (IDO1) that catalyzes the rate-limiting step of the pathway. In the serotonin pathway, the metabolite -acetylserotonin (NAS) has been shown to possess antioxidant, antiinflammatory, and neuroprotective properties in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS).
View Article and Find Full Text PDFApoptotic signalling by p53 occurs at both transcriptional and non-transcriptional levels, as p53 may act as a direct apoptogenic stimulus via activation of the intrinsic mitochondrial pathway. HOPS is a highly conserved, ubiquitously expressed shuttling protein with an ubiquitin-like domain. We generated Hops mice and observed that they are viable with no apparent phenotypic defects.
View Article and Find Full Text PDFIndoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the first step in the kynurenine pathway of tryptophan (Trp) degradation that produces several biologically active Trp metabolites. L-kynurenine (Kyn), the first byproduct by IDO1, promotes immunoregulatory effects via activation of the Aryl hydrocarbon Receptor (AhR) in dendritic cells (DCs) and T lymphocytes. We here identified the nuclear coactivator 7 (NCOA7) as a molecular target of 3-hydroxyanthranilic acid (3-HAA), a Trp metabolite produced downstream of Kyn along the kynurenine pathway.
View Article and Find Full Text PDFExpert Opin Drug Discov
November 2019
: Fingolimod, the first oral disease-modifying treatment (DMT) in multiple sclerosis (MS), is a sphingosine 1-phosphate receptor (S1PR) ligand. Approved in 2010, fingolimod has been extensively studied and has been credited with several mechanisms of actions that contribute to its efficacy in MS, among which is the regulation of lymphocyte circulation between the central nervous system and the periphery. Concerns about toxicity, off-target effects, and real-life performance have been raised over time in post-marketing studies of such that next-generation sphingosine-1 phosphate receptor ligands are now being developed.
View Article and Find Full Text PDFThe cytokine interleukin IL-35 is known to exert strong immunosuppressive functions. Indoleamine 2,3-dioxygenase 1 (IDO1) and Arginase 1 (Arg1) are metabolic enzymes that, expressed by dendritic cells (DCs), contribute to immunoregulation. Here, we explored any possible link between IL-35 and the activity of those enzymes.
View Article and Find Full Text PDFImmunotherapy through immune checkpoint blockers (ICBs) is quickly transforming cancer treatment by improving patients' outcomes. However, innate and acquired resistance to ICBs remain a major challenge in clinical settings. Indoleamine 2,3-dioxygenases (IDOs) are enzymes involved in tryptophan catabolism with a central immunosuppressive function within the tumor microenvironment.
View Article and Find Full Text PDFAlthough significant progress has been made in understanding autoimmunity, no immunotherapy to effectively halt immune-mediated destruction of β cells in type 1 diabetes (T1D) is currently available. For successful immunotherapy it will be necessary to identify novel drug targets as well as robust immunologic biomarkers to predict disease heterogeneity and patient responsiveness. Inhibition of immune checkpoint mechanisms represents a novel and effective strategy in tumor immunotherapy.
View Article and Find Full Text PDF