Publications by authors named "Psalm Haseley"

Although exome sequencing data are generated primarily to detect single-nucleotide variants and indels, they can also be used to identify a subset of genomic rearrangements whose breakpoints are located in or near exons. Using >4,600 tumor and normal pairs across 15 cancer types, we identified over 9,000 high confidence somatic rearrangements, including a large number of gene fusions. We find that the 5' fusion partners of functional fusions are often housekeeping genes, whereas the 3' fusion partners are enriched in tyrosine kinases.

View Article and Find Full Text PDF

Somatic mutations occur during brain development and are increasingly implicated as a cause of neurogenetic disease. However, the patterns in which somatic mutations distribute in the human brain are unknown. We used high-coverage whole-genome sequencing of single neurons from a normal individual to identify spontaneous somatic mutations as clonal marks to track cell lineages in human brain.

View Article and Find Full Text PDF

Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization.

View Article and Find Full Text PDF

Comparisons of stem cell experiments at both molecular and semantic levels remain challenging due to inconsistencies in results, data formats, and descriptions among biomedical research discoveries. The Harvard Stem Cell Institute (HSCI) has created the Stem Cell Commons (stemcellcommons.org), an open, community-based approach to data sharing.

View Article and Find Full Text PDF

Identification of somatic rearrangements in cancer genomes has accelerated through analysis of high-throughput sequencing data. However, characterization of complex structural alterations and their underlying mechanisms remains inadequate. Here, applying an algorithm to predict structural variations from short reads, we report a comprehensive catalog of somatic structural variations and the mechanisms generating them, using high-coverage whole-genome sequencing data from 140 patients across ten tumor types.

View Article and Find Full Text PDF

Transposable elements (TEs) are abundant in the human genome, and some are capable of generating new insertions through RNA intermediates. In cancer, the disruption of cellular mechanisms that normally suppress TE activity may facilitate mutagenic retrotranspositions. We performed single-nucleotide resolution analysis of TE insertions in 43 high-coverage whole-genome sequencing data sets from five cancer types.

View Article and Find Full Text PDF

Many vertebrate organs form through the sequential and reciprocal exchange of signaling molecules between juxtaposed epithelial and mesenchymal tissues. We undertook a systems biology approach that combined the generation and analysis of large-scale spatiotemporal gene expression data with mouse genetic experiments to gain insight into the mechanisms that control epithelial-mesenchymal signaling interactions in the developing mouse molar tooth. We showed that the shift in instructive signaling potential from dental epithelium to dental mesenchyme was accompanied by temporally coordinated genome-wide changes in gene expression in both compartments.

View Article and Find Full Text PDF